新建车站密贴下穿长期服役车站改扩建变形控制技术

刘兵科 麻建飞 贺家新 张斌 李益铭 刘夏冰 贺少辉

刘兵科, 麻建飞, 贺家新, 张斌, 李益铭, 刘夏冰, 贺少辉. 新建车站密贴下穿长期服役车站改扩建变形控制技术[J]. 高压物理学报, 2023, 37(2): 025302. doi: 10.11858/gywlxb.20220676
引用本文: 刘兵科, 麻建飞, 贺家新, 张斌, 李益铭, 刘夏冰, 贺少辉. 新建车站密贴下穿长期服役车站改扩建变形控制技术[J]. 高压物理学报, 2023, 37(2): 025302. doi: 10.11858/gywlxb.20220676
LIU Bingke, MA Jianfei, HE Jiaxin, ZHANG Bin, LI Yiming, LIU Xiabing, HE Shaohui. Deformation Control Technology for Reconstruction and Expansion of Newly Built Station Closely Undercrossing Long-Term Service Station[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025302. doi: 10.11858/gywlxb.20220676
Citation: LIU Bingke, MA Jianfei, HE Jiaxin, ZHANG Bin, LI Yiming, LIU Xiabing, HE Shaohui. Deformation Control Technology for Reconstruction and Expansion of Newly Built Station Closely Undercrossing Long-Term Service Station[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025302. doi: 10.11858/gywlxb.20220676

新建车站密贴下穿长期服役车站改扩建变形控制技术

doi: 10.11858/gywlxb.20220676
基金项目: 北京建工土木工程有限公司项目(KCL19055530)
详细信息
    作者简介:

    刘兵科(1978—),男,硕士,教授级高级工程师,主要从隧道与地铁施工研究.E-mail:452226139@qq.com

    通讯作者:

    贺少辉(1966—),男,博士,教授,主要从隧道与地下工程施工力学研究.E-mail:heshaohui1114@163.com

  • 中图分类号: TU94

Deformation Control Technology for Reconstruction and Expansion of Newly Built Station Closely Undercrossing Long-Term Service Station

  • 摘要: 为保证新建车站密贴下穿服役近50年车站改扩建施工的安全稳定,开展了运营和预留车站的状态评估,依据结构状态制定了施工变形控制标准,借助数值模拟对比了不同扩建施工方案的影响,并结合现场实施验证了优选方案的效果。结果表明:先期建成车站结构存在装饰层掉落、混凝土开裂、剥落、碳化、钢筋腐蚀、底板渗漏水、区间积水及变形缝不均匀沉降等问题;交叉中隔壁法(central cross diagram,CRD)方案中预留3号线车站的最大沉降量为2.2 mm,地表沉降1.7 mm;洞桩法(pile beam arch,PBA)方案中车站的最大沉降量为1.3 mm,地表沉降1.1 mm。综合考虑多种因素后,推荐在该改扩建工程中采用PBA施工方案。现场采用PBA施工方案后,2、3号线车站结构的最大竖向变形分别为−1.28和−1.01 mm,监测指标均在安全阈值内。研究结果可为类似长期服役改扩建工程提供参考。

     

  • 图  车站改扩建平面图

    Figure  1.  Plan of station reconstruction and expansion

    图  车站既有结构图

    Figure  2.  Existing structure of station

    图  主体结构的地质剖面图

    Figure  3.  Geological section of main structure

    图  现场检测

    Figure  4.  On-site inspection

    图  结构状态检测结果

    Figure  5.  Structural state detection results

    图  CRD方案施工图

    Figure  6.  CRD scheme construction

    图  PBA方案施工图

    Figure  7.  PBA construction scheme

    图  计算模型

    Figure  8.  Computation model

    图  既有车站结构沉降云图

    Figure  9.  Settlement cloud diagram of existing station structure

    图  10  改扩建车站的沉降曲线

    Figure  10.  Settlement curve of reconstructed and expanded station

    图  11  地表沉降曲线

    Figure  11.  Surface settlement curves

    图  12  最小主应力云图

    Figure  12.  Cloud diagram of minimum principal stress

    图  13  现场施工

    Figure  13.  Site construction

    图  14  地表沉降监测曲线

    Figure  14.  Settlement monitoring curves

    表  1  检测项目

    Table  1.   Test items

    Test typeDetection contentMethod
    Appearance inspectionCracking, peeling, exposed reinforcement, deformation
    (settlement joint), water seepage, ponding, etc
    Steel ruler measurement, ultrasonic detector,
    hand-held strain gauge, impact echo method, etc
    Mechanical propertyStrengthRebound method and coring method
    DurabilityCarbonization depth, thickness of reinforcement
    protective layer, reinforcement position, chloride
    ion detection, reinforcement corrosion
    Indicator method, electromagnetic method,
    silver nitrate titration method,
    half-cell point method
    下载: 导出CSV

    表  2  变形控制标准(单位:mm)

    Table  2.   Deformation control standard (Unit:mm)

    StationVertical deformation Transverse deformation
    Alert value Alarm value Control value Alert value Alarm value Control value
    Line 2−2.1~0.7−2.4~0.8−3.0~1.0 1.4 1.6 2.0
    Line 32.83.24.01.4 1.6 2.0
    下载: 导出CSV

    表  3  地层参数

    Table  3.   Stratum parameters

    Formation materialsDensity/
    (kg·m−3)
    Elastic modulus/
    MPa
    Poisson’s ratioInternal friction
    angle/(°)
    Cohesion/kN
    Filling180022.50.33105
    Silty clay195027.00.301827
    Fine medium sand198045.00.24300
    Round gravel and pebble2150120.00.22400
    Sandy silt2030110.00.252822
    下载: 导出CSV

    表  4  结构参数

    Table  4.   Structure parameters

    MaterialDensity/(kg·m−3)Cohesion/kNInternal friction angle/(°)Elastic modulus/GPaPoisson’s ratio
    Reinforcement zone23503525 0.320.28
    Primary support243630.000.25
    Secondary lining242531.000.24
    Pile242526.000.20
    下载: 导出CSV

    表  5  施工方案详细对比

    Table  5.   Detailed comparison of construction schemes

    ProjectMaximum settlement/mmMaximum surface settlement/mmMinimum principal stress/MPa
    CRD scheme2.81.7−9.43
    PBA scheme1.31.1−9.08
    ProjectDifferential settlement of
    deformation joint/mm
    Working spaceEngineering cost
    CRD scheme0.8ModerateLower
    PBA scheme0.2LessHigher
    下载: 导出CSV

    表  6  现场监测结果

    Table  6.   Site monitoring results

    StationVertical deformation of
    structure/mm
    Transverse deformation of
    structure/mm
    Track deformation/mmStructural crack
    Line 2−1.280.5−1.36No
    Line 3−1.010.5No
    下载: 导出CSV
  • [1] 蔡磊川, 田清彪, 赵晶, 等. 北京地铁天通苑东站改扩建总体设计方案探讨 [J]. 隧道建设(中英文), 2021, 41(Suppl 1): 329–337.

    CAI L C, TIAN Q B, ZHAO J, et al. Discussion on rehabilitation design of Tiantongyuan east station of Beijing Metro [J]. Tunnel Construction, 2021, 41(Suppl 1): 329–337.
    [2] 安东辉, 邵文. 地铁车站扩建改造工程对原有结构受力影响分析 [J]. 铁道标准设计, 2020, 64(11): 129–135. doi: 10.13238/j.issn.1004-2954.201911060004

    AN D H, SHAO W. Analysis on the effect of the expansion and reconstruction of the metro station on the stress of original structures [J]. Railway Standard Design, 2020, 64(11): 129–135. doi: 10.13238/j.issn.1004-2954.201911060004
    [3] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022 [J]. 中国公路学报, 2022, 35(4): 1–40. doi: 10.3969/j.issn.1001-7372.2022.04.001

    Editorial Department of China Journal of Highway and Transport. Review on China’s traffic tunnel engineering research: 2022 [J]. China Journal of Highway and Transport, 2022, 35(4): 1–40. doi: 10.3969/j.issn.1001-7372.2022.04.001
    [4] 朱斌忠, 郭佳奇, 钱源, 等. 列车动荷载作用下海域段盾构隧道衬砌结构耐久性研究 [J]. 河南理工大学学报(自然科学版), 2022, 41(4): 149–157. doi: 10.16186/j.cnki.1673-9787.2020090072

    ZHU B Z, GUO J Q, QIAN Y, et al. Study on structure durability of submarine shield tunnel lining under train dynamic load [J]. Journal of Henan Polytechnic University (Natural Science), 2022, 41(4): 149–157. doi: 10.16186/j.cnki.1673-9787.2020090072
    [5] 鞠凤萍. 既有运营地铁隧道沉降及治理方法研究 [D]. 北京: 中国地质大学(北京), 2018.

    JU F P. Study on settlement and treatment methods of operating subway tunnel [D]. Beijing: China University of Geosciences (Beijing), 2018.
    [6] 杨潇, 李翔宇, 朱宝林. 基于长期沉降运营地铁隧道健康诊断 [J]. 沈阳建筑大学学报(自然科学版), 2014, 30(1): 49–55.

    YANG X, LI X Y, ZHU B L. Research on the health diagnosis of metro tunnel based on the long-term settlement [J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(1): 49–55.
    [7] 贾剑, 石景山, 周顺华, 等. 盾构隧道扩建地铁车站地表沉降预测及分析 [J]. 岩石力学与工程学报, 2013, 32(Suppl 1): 2883–2890.

    JIA J, SHI J S, ZHOU S H, et al. Forecast and analysis of surface settlement of metro station constructed by shield tunnel expanding [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl 1): 2883–2890.
    [8] 田江涛, 王海涛, 周营, 等. 新建车站密贴下穿既有车站施工方法研究 [J]. 建筑结构, 2022, 52(Suppl 1): 3119–3125. doi: 10.19701/j.jzjg.22S1540

    TIAN J T, WANG H T, ZHOU Y, et al. Research on the construction method of the newly-built station closely pasting and passing the existing station [J]. Building Structure, 2022, 52(Suppl 1): 3119–3125. doi: 10.19701/j.jzjg.22S1540
    [9] 郭宏博, 仇文革, 牛晓宇, 等. 新建通道密贴下穿地铁车站施工影响范围研究 [J]. 土木工程学报, 2021, 54(Suppl 1): 113–120. doi: 10.15951/j.tmgcxb.2021.s1.004

    GUO H B, QIU W G, NIU X Y, et al. Construction influence range of a new passageway closely undercrossing a subway station [J]. China Civil Engineering Journal, 2021, 54(Suppl 1): 113–120. doi: 10.15951/j.tmgcxb.2021.s1.004
    [10] 李美欣, 邵志国, 于德湖. 近距离下穿既有运营地铁车站的换乘车站施工风险评价研究 [J]. 铁道标准设计, 2022, 66(4): 155–161. doi: 10.13238/j.issn.1004-2954.202012140003

    LI M X, SHAO Z G, YU D H. Research on construction risk assessment of transfer station undercrossing adjacent existing operation subway station [J]. Railway Standard Design, 2022, 66(4): 155–161. doi: 10.13238/j.issn.1004-2954.202012140003
    [11] 梁尔斌. 隧道密贴下穿既有车站变形缝沉降控制研究 [J]. 现代隧道技术, 2022, 59(2): 182–191. doi: 10.13807/j.cnki.mtt.2022.02.022

    LIANG E B. Study of the settlement control of deformation joints of tunnels passing closely under the existing station [J]. Modern Tunnelling Technology, 2022, 59(2): 182–191. doi: 10.13807/j.cnki.mtt.2022.02.022
    [12] 施有志, 林联泉, 徐建宁, 等. 增湿条件下膨胀土隧道近距离下穿既有地铁车站施工力学分析 [J]. 铁道科学与工程学报, 2021, 18(1): 200–210. doi: 10.19713/j.cnki.43-1423/u.T20200193

    SHI Y Z, LIN L Q, XU J N, et al. Analysis of construction mechanics of expansive soil tunnel passing through existing subway station in short distance under humidification condition [J]. Journal of Railway Science and Engineering, 2021, 18(1): 200–210. doi: 10.19713/j.cnki.43-1423/u.T20200193
    [13] 何海健, 李松梅, 童利红, 等. 新建地铁车站下穿既有车站土建措施研究 [J]. 地下空间与工程学报, 2021, 17(1): 273–281.

    HE H J, LI S M, TONG L H, et al. Research on construction technical measures of a new metro station passing underneath an existing one [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 273–281.
    [14] 郑勇波, 白廷辉, 李晓军. 考虑碳化的地铁盾构隧道纵缝接头抗弯力学模型研究 [J]. 土木工程学报, 2021, 54(12): 94–103.

    ZHENG Y B, BAI T H, LI X J. Study on bending mechanical model of longitudinal joint in metro shield tunnel considering concrete carbonization [J]. China Civil Engineering Journal, 2021, 54(12): 94–103.
    [15] 北京市质量技术监督局. 城市轨道交通设施养护维修技术规范: DB11/T 718−2010 [S]. 北京, 2010.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  62
  • PDF下载量:  25
出版历程
  • 收稿日期:  2022-10-13
  • 修回日期:  2022-10-24
  • 录用日期:  2022-10-25
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回