基于SPH方法的变压器网侧套管内部爆炸数值模拟及稳定性分析

赵春风 周志航 朱玉富

赵春风, 周志航, 朱玉富. 基于SPH方法的变压器网侧套管内部爆炸数值模拟及稳定性分析[J]. 高压物理学报, 2023, 37(3): 035302. doi: 10.11858/gywlxb.20220674
引用本文: 赵春风, 周志航, 朱玉富. 基于SPH方法的变压器网侧套管内部爆炸数值模拟及稳定性分析[J]. 高压物理学报, 2023, 37(3): 035302. doi: 10.11858/gywlxb.20220674
ZHAO Chunfeng, ZHOU Zhihang, ZHU Yufu. Numerical Simulation and Stability Analysis of Internal Explosion of Transformer Net Side Bushing by SPH Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035302. doi: 10.11858/gywlxb.20220674
Citation: ZHAO Chunfeng, ZHOU Zhihang, ZHU Yufu. Numerical Simulation and Stability Analysis of Internal Explosion of Transformer Net Side Bushing by SPH Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035302. doi: 10.11858/gywlxb.20220674

基于SPH方法的变压器网侧套管内部爆炸数值模拟及稳定性分析

doi: 10.11858/gywlxb.20220674
基金项目: 安徽能源互联网联合基金(2008085UD12)
详细信息
    作者简介:

    赵春风(1983-),男,博士,教授,主要从事工程结构抗震与减震、组合结构抗爆研究.E-mail:zhaowindy@hfut.edu.cn

  • 中图分类号: O382

Numerical Simulation and Stability Analysis of Internal Explosion of Transformer Net Side Bushing by SPH Method

  • 摘要: 网侧套管是变压器的重要组成部分,在使用过程中因绝缘击穿现象可能引起套管内部冷却油爆炸,给变压器箱体造成很大的安全隐患,因此开展网侧套管爆炸事故的定量评估具有重要意义。通过非线性有限元软件ANSYS/LS-DYNA建立了二维变压器套管模型,采用光滑粒子流体动力学法对变压器套管在内部爆炸作用下的动态响应进行了模拟,分析了不同参数对套管破坏特征的影响规律。通过基于套管径向粒子速度曲线的稳定性判断方法,评估了各套管的失稳时间。结果表明:在内部爆炸作用下,套管管壁中部在内外壁拉压联合作用下率先产生破坏,在冲击波传播过程中套管整体损伤呈凸状变化趋势。过高的爆炸当量、冷却油的存在和初始裂纹缺陷对套管保持稳定有较大影响。爆炸当量的减小可以使套管破坏模式由双向剪切破坏向受拉破坏转变,整体稳定性也随之增强。当爆源位于引线外壁时,冷却油流体所辐射出的冲击波不仅使套管失稳时间有所提前,还会造成外壁膨胀破坏范围变大。应力集中现象和有效壁厚的减小使含初始裂纹缺陷套管剪切破坏失稳现象发展迅速。

     

  • 图  变压器套管二维SPH模型

    Figure  1.  Two-dimensional SPH model of transformer bushing

    图  模拟验证中的SPH模型

    Figure  2.  SPH model for validation analysis

    图  柱壳外表面膨胀速度

    Figure  3.  Expansion velocity of outer surface of cylinder

    图  套管爆炸损伤过程

    Figure  4.  Damage process of bushing under explosion

    图  套管沿壁厚的塑性应变分布

    Figure  5.  Plastic strain distribution along the wall thickness of bushing

    图  粒子节点选取示意图

    Figure  6.  Schematic diagram of particle node selection

    图  套管失稳时间判断曲线

    Figure  7.  Judgement curves of bushing instability time

    图  套管损伤特征图像及粒子失稳时间判断曲线

    Figure  8.  Damage characteristics of bushing and judgment curves of particle instability time

    图  对比试件的二维SPH模型

    Figure  9.  Two-dimensional SPH model of comparison specimen

    图  10  对比试件的损伤特征

    Figure  10.  Damage characteristic of comparison specimen

    图  11  对比试件的套管失稳时间判断曲线

    Figure  11.  Judgment curves of bushing instability time of comparison specimen

    图  12  无冷却油套管的损伤特征

    Figure  12.  Damage characteristic of bushing without cooling oil

    图  13  无冷却油套管的失稳时间判断曲线

    Figure  13.  Judgment curves of instability time of bushing without cooling oil

    图  14  两类裂纹缺陷套管

    Figure  14.  Two types of bushing with different crack defects

    图  15  含裂纹缺陷套管的损伤特征

    Figure  15.  Damage characteristic of bushing with different crack defects

    图  16  含裂纹缺陷套管沿壁厚方向的塑性应变

    Figure  16.  Plastic strain of bushing with different crack defects along the wall thickness

    图  17  含裂纹缺陷套管的失稳时间判断曲线

    Figure  17.  Judgment curves of instability time of bushing with different crack defects

    表  1  套管的主要材料属性[14]

    Table  1.   Main material properties of bushing[14]

    pHEL/GPaDensity/(kg·m−3)Shear modulus/GPaTensile strength/GPa${\dot \varepsilon }{_0}$/s–1
    3.633 2801570.261.0
    下载: 导出CSV

    表  2  引线的主要材料属性[1516]

    Table  2.   Main material properties of wire[1516]

    Density/(kg·m−3)A/MPaB/MPanm
    8 9609052920.311.095
    cp/(J·kg−1·K−1)Cc/(m·s−1)S1γ0
    3830.025 34 5781.331.67
    下载: 导出CSV

    表  3  炸药的主要材料属性[18]

    Table  3.   Main material properties of explosive[18]

    Density/(kg·m−3)Ae/GPaBe/GPaR1R2ωE0/GPa
    1 6305409.44.51.10.358
    下载: 导出CSV

    表  4  变压器油的主要材料属性[1516]

    Table  4.   Main material properties of transformer oil[1516]

    Density/(kg·m–3)c/(m·s−1)S1γ0
    8951 4801.750.28
    下载: 导出CSV

    表  5  不同TNT当量下响应的数值模拟结果对比

    Table  5.   Comparison of numerical results of response under different TNT equivalents

    W/(g·cm−1)Failure modeExpansion velocity/(m·s−1)Instability time/μs
    6.0Bidirectional shear failure (three locations)289.1848.8
    4.0Bidirectional shear failure (one location)196.0960.1
    3.2Mixed tensile-shear failure188.0666.9
    2.1Tensile failure164.9782.6
    下载: 导出CSV
  • [1] 谢强, 孙新豪, 赖炜煌. 变压器-套管体系抗震加固理论分析及振动台试验 [J]. 中国电机工程学报, 2020, 40(19): 6390–6399.

    XIE Q, SUN X H, LAI W H. Theoretical analysis and shaking table test on seismic reinforcement of transformer-bushing system [J]. Proceedings of the CSEE, 2020, 40(19): 6390–6399.
    [2] 陈星, 谢强, 李晓璇, 等. 地震作用下变压器侧壁套管的理论建模及摆动效应分析 [J]. 电网技术, 2020, 44(1): 114–121.

    CHEN X, XIE Q, LI X X, et al. Seismic theoretical modelling and rocking effect analysis on transformer lateral bushing [J]. Power System Technology, 2020, 44(1): 114–121.
    [3] 何畅, 谢强, 马国梁, 等. ±800 kV换流变压器-套管体系的抗震性能 [J]. 高电压技术, 2018, 44(6): 1878–1883.

    HE C, XIE Q, MA G L, et al. Seismic behavior of ±800 kV UHV converter transformer and bushing system [J]. High Voltage Engineering, 2018, 44(6): 1878–1883.
    [4] HENDERSON C N, DEFRANCE C S, PREDECKI P, et al. Ballistic fragmentation confinement of coated brittle transformer bushing models [J]. International Journal of Impact Engineering, 2018, 122: 363–373.
    [5] 张少华, 蒋慧灵, 刘国平. 某特高压变压器爆炸事故数值模拟重构 [J]. 消防科学与技术, 2021, 40(3): 356–359.

    ZHANG S H, JIANG H L, LIU G P. Numerical simulation and reconstruction of explosion accident of an UHV transformer [J]. Fire Science and Technology, 2021, 40(3): 356–359.
    [6] 余阳, 阮娅琳, 杨黎波, 等. 换流变压器油蒸汽爆炸的三维仿真研究 [J]. 电瓷避雷器, 2021(2): 155–161.

    YU Y, RUAN Y L, YANG L B, et al. 3D simulation of oil vapor explosion in converter transformer [J]. Insulators and Surge Arresters, 2021(2): 155–161.
    [7] 赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205

    ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205
    [8] 赵铮, 李晓杰, 闫鸿浩, 等. 爆炸压实过程中颗粒碰撞问题的SPH法数值模拟 [J]. 高压物理学报, 2007, 21(4): 373–378. doi: 10.11858/gywlxb.2007.04.007

    ZHAO Z, LI X J, YAN H H, et al. Numerical simulation of partides impact in explosive-diven compaction process using SPH method [J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 373–378. doi: 10.11858/gywlxb.2007.04.007
    [9] 赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. doi: 10.11883/bzycj-2020-0291

    ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. doi: 10.11883/bzycj-2020-0291
    [10] LIU G R, LIU M B. Smoothed particle hydrodynamics: a meshfree particle method [M]. SG Singapore: World Scientific Publishing Company, 2003.
    [11] FRAGASSA C, TOPALOVIC M, PAVLOVIC A, et al. Dealing with the effect of air in fluid structure interaction by coupled SPH-FEM methods [J]. Materials, 2019, 12(7): 1162.
    [12] 姚安林, 田晓建, 徐涛龙, 等. 管道爆炸对同沟邻管的冲击效应及防爆墙抗爆性能 [J]. 石油学报, 2020, 41(6): 753–761. doi: 10.7623/syxb202006010

    YAO A L, TIAN X J, XU T L, et al. Impact effect of pipeline explosion to adjacent pipelines in the same trench and explosion-proof performance of explosion-proof wall [J]. Acta Petrolei Sinica, 2020, 41(6): 753–761. doi: 10.7623/syxb202006010
    [13] 强洪夫, 孙新亚, 王广, 等. 钢箱内部爆炸破坏的SPH数值模拟 [J]. 爆炸与冲击, 2019, 39(5): 052201. doi: 10.11883/bzycj-2017-0439

    QIANG H F, SUN X Y, WANG G, et al. Numerical simulation on steel box damage under internal explosion by smoothed particle hydrodynamics [J]. Explosion and Shock Waves, 2019, 39(5): 052201. doi: 10.11883/bzycj-2017-0439
    [14] CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA [C]//4th European LS-DYNA Users Conference, 2003: 47-60.
    [15] HALLQUIST J O. LS-DYNA keyword user’s manual version 971 [M]. Livermore, USA: Livermore Software Technology Corporation, 2007.
    [16] 辛春亮. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2019.

    XIN C L. Manual of material parameters for finite element analysis [M]. Beijing: Mechanical Industry Press, 2019.
    [17] 李晓杰, 赵春风, 于娜, 等. TNT炸药和乳化炸药驱动飞板的通用状态方程特征线法研究 [J]. 高压物理学报, 2012, 26(4): 462–468. doi: 10.11858/gywlxb.2012.04.016

    LI X J, ZHAO C F, YU N, et al. Characteristic curve method for movement of flyer driven by TNT and emulsion explosives with general equation of state [J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 462–468. doi: 10.11858/gywlxb.2012.04.016
    [18] 赵铮, 陶钢, 杜长星. 爆轰产物JWL状态方程应用研究 [J]. 高压物理学报, 2009, 23(4): 277–282. doi: 10.3969/j.issn.1000-5773.2009.04.007

    ZHAO Z, TAO G, DU C X. Application research on JWL equation of state of det onation products [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 277–282. doi: 10.3969/j.issn.1000-5773.2009.04.007
    [19] 吴思思, 董新龙, 俞鑫炉. 45钢柱壳爆炸膨胀断裂的SPH模拟分析 [J]. 爆炸与冲击, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172

    WU S S, DONG X L, YU X L. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method [J]. Explosion and Shock Waves, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172
    [20] 谢富佩, 徐绯, 曾卓, 等. 复合圆柱壳冲击压缩数值模拟及稳定性研究 [J]. 爆炸与冲击, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431

    XIE F P, XU F, ZENG Z, et al. Numerical simulation on stability of compositecylindrical shell under impact compression [J]. Explosion and Shock Waves, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431
    [21] MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1947, 189(1018): 300–308.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  72
  • PDF下载量:  31
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-11-04
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回