高压下卤素化合物的反常物性

刘妍 李达 崔田

刘妍, 李达, 崔田. 高压下卤素化合物的反常物性[J]. 高压物理学报, 2022, 36(6): 060102. doi: 10.11858/gywlxb.20220672
引用本文: 刘妍, 李达, 崔田. 高压下卤素化合物的反常物性[J]. 高压物理学报, 2022, 36(6): 060102. doi: 10.11858/gywlxb.20220672
LIU Yan, LI Da, CUI Tian. Abnormal Properties of Halogen Compounds under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 060102. doi: 10.11858/gywlxb.20220672
Citation: LIU Yan, LI Da, CUI Tian. Abnormal Properties of Halogen Compounds under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 060102. doi: 10.11858/gywlxb.20220672

高压下卤素化合物的反常物性

doi: 10.11858/gywlxb.20220672
详细信息
    作者简介:

    刘 妍(1996-),女,博士研究生,主要从事高压下新型材料的结构设计与性质研究.E-mail:liu_yan20@mails.jlu.edu.cn

    通讯作者:

    李 达(1983-),男,博士,教授,主要从事高压下凝聚态物质结构与性质研究.E-mail:dali@jlu.edu.cn

    崔 田(1964-),男,博士,教授,主要从事高压下凝聚态物质结构与性质研究.E-mail:cuitian@nbu.edu.cn

  • 中图分类号: O521.2

Abnormal Properties of Halogen Compounds under High Pressure

  • 摘要: 凝聚态物质的基本性质强烈依赖其微观构型及电子结构,而高压可以有效地减小原子间距离,引起物质电子构型的重新排布并改变键合模式,从而使物质以有违传统的物理、化学状态存在,形成常压下无法获得的新结构、新现象和新性质。以第七主族卤素为例,简要介绍卤素化合物在高压下所呈现的反常物理性质。相关研究表明:在高压下卤素化合物呈现出异于常压的价态、配位以及成键方式。这些研究不仅提升了对卤素的基本认识,同时也拓宽了高压物理研究的新视野。

     

  • 图  高压下Li-I[34]和Mg-Br[35]化合物的晶体结构和电子局域函数

    Figure  1.  Crystal structure and electron localized function (ELF) of Li-I[34] and Mg-Br[35] compounds under high pressure

    图  IF8在300 GPa下的晶体结构和投影晶体轨道哈密顿布局分析[49]

    Figure  2.  Crystal structure and projected crystal orbital Hamilton population (COHP) of IF8 at 300 GPa[49]

    图  IN6在100 GPa下的晶体结构和投影晶体轨道哈密顿布局分析[56]

    Figure  3.  Crystal structure and projected crystal orbital Hamilton population of IN6 at 100 GPa[56]

    图  OsF8[64]和IrF8[65]在300 GPa下的晶体结构和投影态密度

    Figure  4.  Crystal structure and projected density of states (PDOS) of OsF8[64] and IrF8[65] at 300 GPa

    图  高压下Cs-F[67]和Hg-F[71]化合物的晶体结构

    Figure  5.  Crystal structure of Cs-F[67] and Hg-F[71] compounds under high pressure

  • [1] LANDAU L D, LIFSHITZ E M. Quantum mechanics: non-relativistic theory [M]. 3rd ed. London: Butterworth-Heinemann, 2003.
    [2] PAULING L. The nature of the chemical bond and the structure of molecules and crystals [M]. 2nd ed. Ithaca: Cornell University Press, 1960.
    [3] MURREL J N, KETTLE S F A, TEDDER J M. The chemical bond [M]. New York: John Willey & Sons, 1985.
    [4] ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
    [5] MIAO M S, SUN Y H, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508–527. doi: 10.1038/s41570-020-0213-0
    [6] DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure [J]. Nature Chemistry, 2017, 9(5): 440–445. doi: 10.1038/nchem.2716
    [7] ZHU L, LIU H Y, PICKARD C J, et al. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core [J]. Nature Chemistry, 2014, 6(7): 644–648. doi: 10.1038/nchem.1925
    [8] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
    [9] MIAO M S, WANG X L, BRGOCH J, et al. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure [J]. Journal of the American Chemical Society, 2015, 137(44): 14122–14128. doi: 10.1021/jacs.5b08162
    [10] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968
    [11] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [12] GREENWOOD N N, EARNSHAW A. Chemistry of the elements [M]. 2nd ed. Oxford: Butterworth-Heinemann, 1997.
    [13] SHEN Y Q, OGANOV A R, QIAN G R, et al. Novel lithium-nitrogen compounds at ambient and high pressures [J]. Scientific Reports, 2015, 5: 14204. doi: 10.1038/srep14204
    [14] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [15] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [16] HORVATH-BORDON E, RIEDEL R, ZERR A, et al. High-pressure chemistry of nitride-based materials [J]. Chemical Society Reviews, 2006, 35(10): 987–1014. doi: 10.1039/b517778m
    [17] SAN-MIGUEL A, LIBOTTE H, GAUTHIER M, et al. New phase transition of solid bromine under high pressure [J]. Physical Review Letters, 2007, 99(1): 015501. doi: 10.1103/PhysRevLett.99.015501
    [18] KUME T, HIRAOKA T, OHYA Y, et al. High pressure Raman study of bromine and iodine: soft phonon in the incommensurate phase [J]. Physical Review Letters, 2005, 94(6): 065506. doi: 10.1103/PhysRevLett.94.065506
    [19] DUAN D F, JIN X L, MA Y M, et al. Effect of nonhydrostatic pressure on superconductivity of monatomic iodine: an ab initio study [J]. Physical Review B, 2009, 79(6): 064518. doi: 10.1103/PhysRevB.79.064518
    [20] ZHANG W W, OGANOV A R, GONCHAROV A F, et al. Unexpected stable stoichiometries of sodium chlorides [J]. Science, 2013, 342(6165): 1502–1505. doi: 10.1126/science.1244989
    [21] ZHANG W W, OGANOV A R, ZHU Q, et al. Stability of numerous novel potassium chlorides at high pressure [J]. Scientific Reports, 2016, 6: 26265. doi: 10.1038/srep26265
    [22] PORȨBA T, RACIOPPI S, GARBARINO G, et al. Investigating the structural symmetrization of CsI3 at high pressures through combined X-ray diffraction experiments and theoretical analysis [J]. Inorganic Chemistry, 2022, 61(28): 10977–10985. doi: 10.1021/acs.inorgchem.2c01690
    [23] HOLZAPFEL W B. Physics of solids under strong compression [J]. Reports on Progress in Physics, 1996, 59(1): 29–90. doi: 10.1088/0034-4885/59/1/002
    [24] WENTORF JR R H. Cubic form of boron nitride [J]. Journal of Chemical Physics, 1957, 26(4): 956. doi: 10.1063/1.1745964
    [25] TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal raman intensity [J]. Physical Review Letters, 2014, 113(20): 205502. doi: 10.1103/PhysRevLett.113.205502
    [26] EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [27] MIAO M S, HOFFMANN R. High pressure electrides: a predictive chemical and physical theory [J]. Accounts of Chemical Research, 2014, 47(4): 1311–1317. doi: 10.1021/ar4002922
    [28] BUZEA C, ROBBIE K. Assembling the puzzle of superconducting elements: a review [J]. Superconductor Science and Technology, 2005, 18(1): R1–R8. doi: 10.1088/0953-2048/18/1/R01
    [29] DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals [J]. Nature, 2015, 525(7568): 226–229. doi: 10.1038/nature14681
    [30] DUBROVINSKAIA N, DUBROVINSKY L, SOLOPOVA N A, et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond [J]. Science Advances, 2016, 2(7): e1600341. doi: 10.1126/sciadv.1600341
    [31] ZHAI S M, ITO E. Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils [J]. Geoscience Frontiers, 2011, 2(1): 101–106. doi: 10.1016/j.gsf.2010.09.005
    [32] MUJICA A, RUBIO A, MUÑOZ A, et al. High-pressure phases of group-Ⅳ, Ⅲ-Ⅴ, and Ⅱ-Ⅵ compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863–912. doi: 10.1103/RevModPhys.75.863
    [33] WANG Y C, MA Y M. Perspective: crystal structure prediction at high pressures [J]. Journal of Chemical Physics, 2014, 140(4): 040901. doi: 10.1063/1.4861966
    [34] BOTANA J, BRGOCH J, HOU C J, et al. Iodine anions beyond −1: formation of Li nI (n = 2–5) and its interaction with quasiatoms [J]. Inorganic Chemistry, 2016, 55(18): 9377–9382. doi: 10.1021/acs.inorgchem.6b01561
    [35] WANG C, LIU Y X, CHEN X, et al. Pressure-induced unexpected −2 oxidation states of bromine and superconductivity in magnesium bromide [J]. Physical Chemistry Chemical Physics, 2020, 22(5): 3066–3072. doi: 10.1039/C9CP05627K
    [36] YANG L M, GANZ E, CHEN Z F, et al. Four decades of the chemistry of planar hypercoordinate compounds [J]. Angewandte Chemie International Edition, 2015, 54(33): 9468–9501. doi: 10.1002/anie.201410407
    [37] ZHANG H J, LI Y F, HOU J H, et al. FeB6 monolayers: the graphene-like material with hypercoordinate transition metal [J]. Journal of the American Chemical Society, 2016, 138(17): 5644–5651. doi: 10.1021/jacs.6b01769
    [38] LIPKE M C, TILLEY T D. Hypercoordinate ketone adducts of electrophilic η3-H2SiRR’ ligands on ruthenium as key intermediates for efficient and robust catalytic hydrosilation [J]. Journal of the American Chemical Society, 2014, 136(46): 16387–16398. doi: 10.1021/ja509073c
    [39] WANG Z X, VON RAGUÉ SCHLEYER P. Planar hypercoordinate carbons joined: wheel-shaped molecules with C-C axles [J]. Angewandte Chemie International Edition, 2002, 41(21): 4082–4085. doi: 10.1002/1521-3773(20021104)41:21<4082::AID-ANIE4082>3.0.CO;2-Q
    [40] KHAN A, FOUCHER D. Hypercoordinate compounds of the group 14 elements containing κn-C, N-, C, O-, C, S- and C, P-ligands [J]. Coordination Chemistry Reviews, 2016, 312: 41–66. doi: 10.1016/j.ccr.2015.10.009
    [41] WILLEMSENS L C, VAN DER KERK G J M. Investigations on organolead compounds: Ⅰ. a novel red organolead compound a reinvestigation of krause’s red diphenyllead [J]. Journal of Organometallic Chemistry, 1964, 2(3): 271–276. doi: 10.1016/S0022-328X(00)80522-7
    [42] MUSHER J I. The chemistry of hypervalent molecules [J]. Angewandte Chemie International Edition, 1969, 8(1): 54–68. doi: 10.1002/anie.196900541
    [43] SCHLEYER P. Hypervalent compounds [J]. Chemical & Engineering News, 1984, 62(22): 4.
    [44] RAHM M, HOFFMANN R, ASHCROFT N W. Atomic and ionic radii of elements 1–96 [J]. Chemistry: A European Journal, 2016, 22(41): 14625–14632. doi: 10.1002/chem.201602949
    [45] CHRISTE K O, CURTIS E C, DIXON D A. On the problem of heptacoordination: vibrational spectra, structure, and fluxionality of iodine heptafluoride [J]. Journal of the American Chemical Society, 1993, 115(4): 1520–1526. doi: 10.1021/ja00057a044
    [46] CHRISTE K O, DIXON D A, SANDERS J C P, et al. Heptacoordination: pentagonal bipyramidal ${\rm XeF_7^+ }$ and ${\rm TeF_7^- }$ ions [J]. Journal of the American Chemical Society, 1993, 115(21): 9461–9467. doi: 10.1021/ja00074a011
    [47] CHRISTE K O, SANDERS J C P, SCHROBILGEN G J, et al. High-coordination number fluoro- and oxofluoro-anions; IF6O, ${\rm TeF_6O_2^- }$ , ${\rm TeF_7^- }$ , ${\rm IF_8^-} $ and ${\rm TeF_8^{2-}} $ [J]. Journal of the Chemical Society, Chemical Communications, 1991(13): 837–840. doi: 10.1039/C39910000837
    [48] RIEDEL S, KAUPP M. The highest oxidation states of the transition metal elements [J]. Coordination Chemistry Reviews, 2009, 253(5/6): 606–624. doi: 10.1016/j.ccr.2008.07.014
    [49] LUO D B, LV J, PENG F, et al. A hypervalent and cubically coordinated molecular phase of IF8 predicted at high pressure [J]. Chemical Science, 2019, 10(8): 2543–2550. doi: 10.1039/C8SC04635B
    [50] TANG S, WU Y, LIAO W Q, et al. Revealing the metal-like behavior of iodine: an iodide-catalysed radical oxidative alkenylation [J]. Chemical Communications, 2014, 50(34): 4496–4499. doi: 10.1039/C4CC00644E
    [51] LIANG H, CIUFOLINI M A. Chiral hypervalent iodine reagents in asymmetric reactions [J]. Angewandte Chemie International Edition, 2011, 50(50): 11849–11851. doi: 10.1002/anie.201106127
    [52] SREENITHYA A, PATEL C, HADAD C M, et al. Hypercoordinate iodine catalysts in enantioselective transformation: the role of catalyst folding in stereoselectivity [J]. ACS Catalysis, 2017, 7(6): 4189–4196. doi: 10.1021/acscatal.7b00975
    [53] BRILL T B. d orbitals in main group elements [J]. Journal of Chemical Education, 1973, 50(6): 392. doi: 10.1021/ed050p392
    [54] CONNERADE J P, DOLMATOV V K, LAKSHMI P A. The filling of shells in compressed atoms [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33(2): 251–264. doi: 10.1088/0953-4075/33/2/310
    [55] ALLRED A L. Electronegativity values from thermochemical data [J]. Journal of Inorganic and Nuclear Chemistry, 1961, 17(3/4): 215–221. doi: 10.1016/0022-1902(61)80142-5
    [56] LIU Y, WANG R, WANG Z G, et al. Formation of twelve-fold iodine coordination at high pressure [J]. Nature Communications, 2022, 13(1): 412. doi: 10.1038/s41467-022-28083-4
    [57] VOGT T, FITCH A N, COCKCROFT J K. Crystal and molecular structures of rhenium heptafluoride [J]. Science, 1994, 263(5151): 1265–1267. doi: 10.1126/science.263.5151.1265
    [58] SEPPELT K. Molecular hexafluorides [J]. Chemical Reviews, 2015, 115(2): 1296–1306. doi: 10.1021/cr5001783
    [59] MOLSKI M J, SEPPELT K. The transition metal hexafluorides [J]. Dalton Transactions, 2009(18): 3379–3383. doi: 10.1039/b821121c
    [60] DREWS T, SUPEŁ J, HAGENBACH A, et al. Solid state molecular structures of transition metal hexafluorides [J]. Inorganic Chemistry, 2006, 45(9): 3782–3788. doi: 10.1021/ic052029f
    [61] CHRISTE K O. Bartlett’s discovery of noble gas fluorides, a milestone in chemical history [J]. Chemical Communications, 2013, 49(41): 4588–4590. doi: 10.1039/c3cc41387j
    [62] BARTLETT N. Xenon hexafluoroplatinate (V) Xe+[PtF6] [J]. Proceedings of the Chemical Society, 1962, 112(6): 218.
    [63] RIEDEL S, KAUPP M. Where is the limit of highly fluorinated high-oxidation-state osmium species? [J]. Inorganic Chemistry, 2006, 45(26): 10497–10502. doi: 10.1021/ic061054y
    [64] LIN J Y, DU X, RAHM M, et al. Exploring the limits of transition-metal fluorination at high pressures [J]. Angewandte Chemie International Edition, 2020, 59(23): 9155–9162. doi: 10.1002/anie.202002339
    [65] LIN J Y, ZHAO Z Y, LIU C Y, et al. IrF8 molecular crystal under high pressure [J]. Journal of the American Chemical Society, 2019, 141(13): 5409–5414. doi: 10.1021/jacs.9b00069
    [66] MIAO M S, BOTANA J, PRAVICA M, et al. Inner-shell chemistry under high pressure [J]. Japanese Journal of Applied Physics, 2017, 56(5S3): 05FA10. doi: 10.7567/JJAP.56.05FA10
    [67] MIAO M S. Caesium in high oxidation states and as a p-block element [J]. Nature Chemistry, 2013, 5(10): 846–852. doi: 10.1038/nchem.1754
    [68] AGRON P A, BEGUN G M, LEVY H A, et al. Xenon difluoride and the nature of the xenon-fluorine bond [J]. Science, 1963, 139(3557): 842–844. doi: 10.1126/science.139.3557.842
    [69] CHRISTE K O, CURTIS E C, DIXON D A, et al. The pentafluoroxenate (Ⅳ) anion, ${\rm XeF_5^-} $ : the first example of a pentagonal planar AX5 species [J]. Journal of the American Chemical Society, 1991, 113(9): 3351–3361. doi: 10.1021/ja00009a021
    [70] LUO D B, WANG Y C, YANG G C, et al. Barium in high oxidation states in pressure-stabilized barium fluorides [J]. The Journal of Physical Chemistry C, 2018, 122(23): 12448–12453. doi: 10.1021/acs.jpcc.8b03459
    [71] BOTANA J, WANG X L, HOU C J, et al. Mercury under pressure acts as a transition metal: calculated from first principles [J]. Angewandte Chemie International Edition, 2015, 54(32): 9280–9283. doi: 10.1002/anie.201503870
    [72] WANG X F, ANDREWS L, RIEDEL S, et al. Mercury is a transition metal: the first experimental evidence for HgF4 [J]. Angewandte Chemie International Edition, 2007, 46(44): 8371–8375. doi: 10.1002/anie.200703710
  • 加载中
图(5)
计量
  • 文章访问数:  1277
  • HTML全文浏览量:  135
  • PDF下载量:  74
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2022-11-01
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回