块石混凝土遮弹层界面对抗侵彻性能影响的数值模拟研究

柳兴旺 邓旭艳 秦青阳 王银

柳兴旺, 邓旭艳, 秦青阳, 王银. 块石混凝土遮弹层界面对抗侵彻性能影响的数值模拟研究[J]. 高压物理学报, 2023, 37(2): 025101. doi: 10.11858/gywlxb.20220669
引用本文: 柳兴旺, 邓旭艳, 秦青阳, 王银. 块石混凝土遮弹层界面对抗侵彻性能影响的数值模拟研究[J]. 高压物理学报, 2023, 37(2): 025101. doi: 10.11858/gywlxb.20220669
LIU Xingwang, DENG Xuyan, QIN Qingyang, WANG Yin. Numerical Investigation on Effect of Interface Modelling of Rock-Rubble Shielding Overlays on the Anti-Penetration Capability[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025101. doi: 10.11858/gywlxb.20220669
Citation: LIU Xingwang, DENG Xuyan, QIN Qingyang, WANG Yin. Numerical Investigation on Effect of Interface Modelling of Rock-Rubble Shielding Overlays on the Anti-Penetration Capability[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025101. doi: 10.11858/gywlxb.20220669

块石混凝土遮弹层界面对抗侵彻性能影响的数值模拟研究

doi: 10.11858/gywlxb.20220669
基金项目: 中国电力建设股份有限公司科技项目(DJ-ZDZX-2019-02)
详细信息
    作者简介:

    柳兴旺(1986-),男,博士,高级工程师,主要从事地下工程防灾设计及管理研究.E-mail:1915252557@qq.com

  • 中图分类号: O385

Numerical Investigation on Effect of Interface Modelling of Rock-Rubble Shielding Overlays on the Anti-Penetration Capability

  • 摘要: 基于三维细观建模方法和Kong-Fang混凝土材料模型,开展了某弹体侵彻块石混凝土遮弹层的数值模拟研究。采用块石与基体混凝土共节点建模和面面接触建模两种方式,探讨了界面对弹体过载、侵彻深度以及混凝土与块石损伤破坏的影响。数值模拟结果表明:块石与混凝土共节点建模方式强化了块石与混凝土间的界面效应,高估了靶体的整体性,而面面接触建模方式弱化了界面效应,故采用共节点建模方式时,弹体过载(加速度)偏大,侵彻深度偏小;采用共节点建模方式时,损伤区域沿C100混凝土和块石交界面发展,损伤区域连续,而采用面面接触建模方式时,损伤区域在弹道近区连续,近区与远区损伤不连续。基于数值模拟结果,进一步对块石混凝土遮弹层的工程设计计算提出了实用性建议。

     

  • 图  弹体尺寸

    Figure  1.  Projectile dimension

    图  弹体和块石混凝土有限元模型

    Figure  2.  Finite element models of projectile and rock-rubble overlays

    图  块石混凝土遮弹层数值建模步骤

    Figure  3.  Modelling procedure of rock-rubble overlays

    图  基体混凝土与块石之间相互作用的两种建模方式

    Figure  4.  Two modeling methods of interactions between matrix concrete and rock

    图  加速度时程曲线

    Figure  5.  Acceleration-time history curves

    图  接触力时程曲线

    Figure  7.  Contact force-time history curves

    图  侵彻深度时程曲线

    Figure  6.  Penetration depth-time history curves

    图  C100混凝土的损伤破坏

    Figure  8.  Damage of C100 concrete

    图  块石的损伤破坏

    Figure  9.  Damage of rubble

    图  10  弹体变形与偏转

    Figure  10.  Deformation and deflection of projectile

    图  11  固结体侵彻计算结果

    Figure  11.  Numerical simulation results of concretion target subjected to penetration

    表  1  C100混凝土模型参数

    Table  1.   Model parameters of C100 concrete

    a1a2εfracd1d2d3α
    0.587 60.025/fc0.010.041.50.000 11.0
    下载: 导出CSV

    表  2  HJC材料模型参数

    Table  2.   HJC material model parameters

    Basic mechanical parameters Damage parameters Strain-rate parameter
    ρ/(kg·m−3)fc/MPaG/GPaT/MPaD1D2εminC
    2 60012028.78 0.0410.01 0.007
    Strength surface parameters Pressure parameters
    ABNSmaxpcrush/MPaμcrushK1/GPa K2/GPaK3/GPa
    0.32.50.0077 400.002 1612 2542
    下载: 导出CSV

    表  3  计算工况

    Table  3.   Calculation cases

    CasesProjectile propertyContact modeNumber
    1RigidConedeR-1
    2Surface-to-surfaceR-2
    3DeformationConedeD-1
    4Surface-to-surfaceD-2
    下载: 导出CSV
  • [1] 闫焕敏, 张志刚, 葛涛, 等. 防护工程中遮弹层的研究进展 [J]. 兵器材料科学与工程, 2016, 39(1): 127–132. doi: 10.14024/j.cnki.1004-244x.20160105.001

    YAN H M, ZHANG Z G, GE T, et al. Research progress of bursting layer in protection engineer [J]. Ordnance Material Science and Engineering, 2016, 39(1): 127–132. doi: 10.14024/j.cnki.1004-244x.20160105.001
    [2] AUSTIM C F, HALSEY C C, CLODT R L. Protection systems development: ESL-TR-83-39 [R]. Florida, USA: Engineering and Services Laboratory, Air Force Engineering and Services Center, Tyndall Air Force Base, 1982.
    [3] GELMAN M D, RICHARD B N, ITO Y M. Impact of armor-piercing projectile into array of large caliber boulders [R]. Waterways Experiment Station, 1987.
    [4] ROHANI B. Penetration of kinetic energy projectiles into rock-rubbles/boulder overlays [R]. Vicksburg, Mississippi, USA: U. S. Army Engineer Waterways Experiment Station, 1987.
    [5] LANGHEIM H, PAHL H, SCHMOLINSKE E, et al. Subscale penetration tests with bombs and advanced penetration against hardened structures [C]//The Sixth International Symposium Interaction of Non-Nuclear Munitions with Structures. Panama, Florida, USA: Wright Laboratory Air Base Systems Branch, 1993: 12–17.
    [6] 姚焕忠, 韩国建, 程国亮. 块石高强固结体抗侵彻性能试验研究 [J]. 防护工程, 2013, 35(3): 17–21.

    YAO H Z, HAN G J, CHENG G L. Experimental research and analysis on anti-penetration performance of nubby stone concretion [J]. Protective Engineering, 2013, 35(3): 17–21.
    [7] 穆朝民, 施鹏, 辛凯. 射弹侵彻块石遮弹层的数值模拟 [J]. 兵器材料科学与工程, 2012, 35(5): 4–8.

    MU C M, SHI P, XIN K. Numerical simulation on rock anti-penetration layer against penetrating [J]. Ordnance Material Science and Engineering, 2012, 35(5): 4–8.
    [8] 逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22.

    PANG G W, FANG Q, KONG X Z. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22.
    [9] FANG Q, ZHANG J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118–128. doi: 10.1016/j.ijimpeng.2013.08.010
    [10] 方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究 [J]. 工程力学, 2013, 30(1): 14–21.

    FANG Q, ZHANG J H, HUAN Y, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete [J]. Engineering Mechanics, 2013, 30(1): 14–21.
    [11] 方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. doi: 10.11883/1001-1455(2015)04-0489-07

    FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. doi: 10.11883/1001-1455(2015)04-0489-07
    [12] 宫俊, 吴昊, 方秦, 等. 刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟 [J]. 振动与冲击, 2017, 36(1): 55–63.

    GONG J, WU H, FANG Q, et al. Test and mesoscale numerical simulation for corundum-aggregate ultra-high performance cementitious composites against projectile penetration [J]. Journal of Vibration and Shock, 2017, 36(1): 55–63.
    [13] 方秦, 杜涛, 彭永, 等. 对遮弹层抗弹体侵彻性能的讨论 [J]. 防护工程, 2014, 36(5): 31–36.

    FANG Q, DU T, PENG Y, et al. Discussion on the performance of the overlays against the penetration of projectiles [J]. Protective Engineering, 2014, 36(5): 31–36.
    [14] KONG X Z, FANG Q, CHEN L, et al. A new material for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. doi: 10.1016/j.ijimpeng.2018.05.006
    [15] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. doi: 10.1016/j.ijimpeng.2020.103633
    [16] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. doi: 10.1016/j.ijimpeng.2021.103815
    [17] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. doi: 10.1016/j.ijimpeng.2017.02.016
    [18] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1 320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. doi: 10.1016/j.conbuildmat.2014.10.041
    [19] HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. doi: 10.1016/j.ijimpeng.2020.103687
    [20] YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. doi: 10.1016/j.ijimpeng.2021.103860
    [21] HUANG X P, KONG X Z, HU J, et al. The influence of free water content on ballistic performances of concrete targets [J]. International Journal of Impact Engineering, 2020, 139: 103530. doi: 10.1016/j.ijimpeng.2020.103530
    [22] LS-DYNA keyword user’s manual version 971 [M]. Livermore Software Technology Corporation (LSTC), 2007.
    [23] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9): 847–873.
    [24] 方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204.

    FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook constitutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204.
    [25] USACE. Structures to resist the effects of accidental explosions: UFC 3−340−02 [R] Washington, DC: USACE, 2014.
    [26] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28: 479–497. doi: 10.1016/S0734-743X(02)00108-2
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  64
  • PDF下载量:  56
出版历程
  • 收稿日期:  2022-10-05
  • 修回日期:  2022-10-27
  • 录用日期:  2023-03-09
  • 网络出版日期:  2023-04-13
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回