Similar Analysis of PELE Penetrating Metal Target Fragmentation Effect
-
摘要: 为了研究横向效应增强型侵彻体(penetrator with enhanced lateral effects, PELE)侵彻金属靶板破碎效应的相似规律,选取PELE的壳体破碎长度和靶后破片散布半径作为衡量PELE破碎效应的两个物理参量,基于量纲理论对PELE破碎效应问题进行相似分析,应用AUTODYN软件开展了4组相似模型数值模拟,并进行了两组相似模型验证试验。研究结果表明:通过相似理论分析,确定了PELE破碎效应满足严格的几何相似律。在800~2000 m/s撞击速度范围内,归一化处理的壳体破碎长度和靶后破片散布半径数值模拟结果及试验结果与几何尺寸无关,仅随撞击速度的提升呈线性增长,从而证明了PELE侵彻金属靶的破碎效应满足几何相似律。
-
关键词:
- 横向效应增强型侵彻体 /
- 侵彻 /
- 破碎效应 /
- 量纲分析 /
- 相似律
Abstract: To study similar law of the fragmentation effect of penetrator with enhanced lateral effects (PELE) penetrating a metal target plate, breaking length of the PELE jacket and scattering radius of the fragments behind target are selected as two physical parameters to measure the fragmentation effect of PELE. A similar analysis on the fragmentation effect of PELE was conducted based on dimensional theory. Four groups of scaling model simulations were carried out using AUTODYN software, and two groups of scaling model verification tests were done. It is determined that the fragmentation effect of PELE satisfies geometric similar law through the similar theory analysis, and in the range of 800–2000 m/s impact velocity, the normalized breaking length of jacket and dispersion radius of fragments both increase linearly with the impact velocity in the simulation and test results, which proves that the fragmentation effect of PELE penetrating the metal target satisfies the geometric similarity law. -
表 1 PELE和靶板材料模型参数
Table 1. Material model parameters of PELE and metal target
Component ρ/(g·cm−3) Grüneisen coefficient C1/(km·s−1) S1 Shear modulus/GPa Yield
stress/GPaPlastic strain Jacket (D-180 K) 18.000 0 4.03 1.237 139.0 1.50 Filling (A-G3) 2.650 1.97 5.24 1.400 27.5 0.30 Steel target
(XC 48)7.823 0 4.57 1.490 77.0 0.80 1.2 Aluminum target (A-U4G) 2.800 2.0 5.20 1.360 26.7 0.40 1.2 Component Principal tensile
failure stress/GPaPrincipal tensile
failure strainCrack softening Fracture energy/(J·m−2) Stochastic failure Stochastic variance Erosion strain Jacket (D-180 K) 2.8 0.035 Yes 45 Yes 36.65 0.6 Filling (A-G3) 0.5 No No 0.8 Steel target
(XC 48)No No Aluminum target (A-U4G) No No 表 2 不同比例模型的几何参数
Table 2. Geometric parameters of different scale model
λ d1/mm d2/mm L/mm l/mm D/mm H/mm s/mm v/(m·s−1) 1 5 3 25 22.5 10 1.5 0.125 800–2000 2 10 6 50 45.0 20 3.0 0.250 3 15 9 75 67.5 30 4.5 0.500 4 20 12 100 90.0 40 6.0 0.750 表 3 PELE弹丸和靶板的几何尺寸
Table 3. Geometric dimension of PELE projectile and target plate
λ d1/mm d2/mm L/mm l/mm H/mm v/(m·s−1) 1 10 7 25 22.5 3 800–1600 2 20 14 50 90.0 6 -
[1] 程春, 杜忠华, 陈曦, 等. 壳体刻槽PELE冲击破碎数值模拟 [J]. 弹道学报, 2019, 31(3): 92–96.CHENG C, DU Z H, CHEN X, et al. Numerical simulation for impact fragmentation of jacket grooved PELE [J]. Journal of Ballistics, 2019, 31(3): 92–96. [2] 杜忠华, 宋丽丽. 横向效应增强型侵彻体撞击金属薄板理论模型 [J]. 南京理工大学, 2011, 35(6): 822–826.DU Z H, SONG L L. Theoretical model of penetrator with enhanced lateral effect impacting thin metal target [J]. Journal of Nanjing University of Science and Technology, 2011, 35(6): 822–826. [3] 朱建生, 赵国志, 杜忠华, 等. 小口径PELE作用薄靶板影响因素的实验研究 [J]. 实验力学, 2007, 22(5): 505–510. doi: 10.3969/j.issn.1001-4888.2007.05.010ZHU J S, ZHAO G Z, DU Z H, et al. Experimental study of the influence factors on small caliber PELE impacting thin target [J]. Journal of Experimental Mechanics, 2007, 22(5): 505–510. doi: 10.3969/j.issn.1001-4888.2007.05.010 [4] 朱建生, 赵国志, 杜忠华, 等. PELE垂直侵彻薄靶的机理分析 [J]. 爆炸与冲击, 2009, 29(3): 281–288. doi: 10.3321/j.issn:1001-1455.2009.03.010ZHU J S, ZHAO G Z, DU Z H, et al. Mechanism of PELE projectiles perpendicularly impacting on thin target plates [J]. Explosion and Shock Waves, 2009, 29(3): 281–288. doi: 10.3321/j.issn:1001-1455.2009.03.010 [5] 朱建生, 赵国志, 杜忠华, 等. 着靶速度对PELE横向效应的影响 [J]. 力学与实践, 2007, 29(5): 12–16. doi: 10.3969/j.issn.1000-0879.2007.05.003ZHU J S, ZHAO G Z, DU Z H, et al. The influence of impact velocity on the penetrator with enhanced lateral effects (PELE) [J]. Mechanics in Engineering, 2007, 29(5): 12–16. doi: 10.3969/j.issn.1000-0879.2007.05.003 [6] CHENG C, XU L Z, PANG Z J, et al. Fragmentation characteristics and damage capacity of radial layered PELE [J]. Latin American Journal of Solids and Structures, 2020, 17(8): e327. [7] 朱建生, 赵国志, 杜忠华, 等. 靶板厚度对横向效应增强型侵彻体作用效果的影响 [J]. 南京理工大学学报(自然科学版), 2009, 33(4): 474–479.ZHU J S, ZHAO G Z, DU Z H, et al. Influence of target thickness on lateral effect of PELE [J]. Journal of Nanjing University of Science & Technology (Natural Science Edition), 2009, 33(4): 474–479. [8] 蒋建伟, 张谋, 门建兵, 等. 不同内核材料PELE弹丸对多层靶穿甲实验研究 [J]. 北京理工大学学报, 2010, 30(9): 1009–1012. doi: 10.15918/j.tbit1001-0645.2010.09.009JIANG J W, ZHANG M, MEN J B, et al. Experimental study on multi-layered target penetration of PELE with different cores [J]. Transactions of Beijing Institute of Technology, 2010, 30(9): 1009–1012. doi: 10.15918/j.tbit1001-0645.2010.09.009 [9] PAULUS G, SCHIRM V. Impact behaviour of PELE projectiles perforating thin target plates [J]. International Journal of Impact Engineering, 2006, 33(1): 566–579. [10] VERREAULT J. Analytical and numerical description of the PELE fragmentation upon impact with thin target plates [J]. International Journal of Impact Engineering, 2015, 76: 196–206. doi: 10.1016/j.ijimpeng.2014.09.012 [11] VERREAULT J, HINSBERG N V, ABADJIEVA E. PELE fragmentation dynamics [C]//27th International Symposium on Ballistics. Freiburg, Germany: International Ballistics Society, 2013. [12] FAN Z J, RAN X W, TANG W H, et al. The model to calculate the radial velocities of fragments after PELE penetrator perforating a thin plate [J]. International Journal of Impact Engineering, 2016, 95: 12–16. doi: 10.1016/j.ijimpeng.2016.04.011 [13] 佚名. 聚能射流侵彻过程模型律 [J]. 力学学报, 1974, 1: 3–12.YI M. Model law of penetration process of shaped jet [J]. Chinese Journal of Theoretical and Applied Mechanics, 1974, 1: 3–12. [14] 陶为俊, 黄风雷, 浣石. 聚能射流侵彻过程的相似律及其在数值仿真中的应用 [J]. 广州大学学报 (自然科学版), 2008, 7(1): 29–33.TAO W J, HUANG F L, HUAN S. Analogue law of the penetration process of shaped charge jet and application on numerical simulation [J]. Journal of Guangzhou University (Natural Science Edition), 2008, 7(1): 29–33. [15] 程怡豪, 李干, 岳松林, 等. 混凝土超高速侵彻效应的相似规律 [J]. 力学与实践, 2019, 41(5): 543–549.CHENG Y H, LI G, YUE S L, et al. Similarity laws of hypervelocity penetration effects of concrete [J]. Mechanics in Engineering, 2019, 41(5): 543–549. [16] 彭永, 卢芳云, 方秦, 等. 弹体侵彻混凝土靶体的尺寸效应分析 [J]. 爆炸与冲击, 2019, 39(11): 1–10. doi: 10.11883/bzycj-2018-0402PENG Y, LU F Y, FANG Q, et al. Analyses of the size effect for projectile penetrations into concrete targets [J]. Explosion and Shock Waves, 2019, 39(11): 1–10. doi: 10.11883/bzycj-2018-0402 [17] CHENG C, DU Z H, CHEN X, et al. Damage of multi-layer spaced metallic target plates impacted by radial layered PELE [J]. Defence Technology, 2020, 16(1): 201–207. doi: 10.1016/j.dt.2019.05.002 [18] 高光发. 量纲分析理论与应用 [M]. 北京: 科学出版社, 2021.GAO G F. The theory and application of dimensional analysis [M]. Beijing: Science Press, 2021. [19] DING L L, ZHOU J Y, TANG W H, et al. Damage characteristics of PELE projectile with gradient density inner core material [J]. Materials, 2018, 11(12): 1–19. [20] DING L L, ZHOU J Y, TANG W H, et al. Research on the crushing process of PELE casing material based on the crack-softening algorithm and stochastic failure algorithm [J]. Materials, 2018, 11(9): 1–19.