Al/CFRP/混合蜂窝铝复合夹芯多层结构抗侵彻数值模拟

纪垚 徐双喜 陈威 乐京霞 李晓彬 李营

纪垚, 徐双喜, 陈威, 乐京霞, 李晓彬, 李营. Al/CFRP/混合蜂窝铝复合夹芯多层结构抗侵彻数值模拟[J]. 高压物理学报, 2023, 37(1): 014201. doi: 10.11858/gywlxb.20220657
引用本文: 纪垚, 徐双喜, 陈威, 乐京霞, 李晓彬, 李营. Al/CFRP/混合蜂窝铝复合夹芯多层结构抗侵彻数值模拟[J]. 高压物理学报, 2023, 37(1): 014201. doi: 10.11858/gywlxb.20220657
JI Yao, XU Shuangxi, CHEN Wei, LE Jingxia, LI Xiaobin, LI Ying. Numerical Simulation of Anti-Penetration of Al/CFRP/Hybrid Honeycomb Aluminum Composite Sandwich Multilayer Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014201. doi: 10.11858/gywlxb.20220657
Citation: JI Yao, XU Shuangxi, CHEN Wei, LE Jingxia, LI Xiaobin, LI Ying. Numerical Simulation of Anti-Penetration of Al/CFRP/Hybrid Honeycomb Aluminum Composite Sandwich Multilayer Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014201. doi: 10.11858/gywlxb.20220657

Al/CFRP/混合蜂窝铝复合夹芯多层结构抗侵彻数值模拟

doi: 10.11858/gywlxb.20220657
基金项目: 国家自然科学基金(51979213);湖北省自然科学基金(2021CFB064)
详细信息
    作者简介:

    纪 垚(2001-),男,硕士研究生,主要从事抗爆防护结构设计研究. E-mail:982296487@qq.com

    通讯作者:

    陈 威(1988-),男,博士,副教授,主要从事抗爆防护结构设计研究. E-mail:whutcw01@126.com

  • 中图分类号: O347; TB333

Numerical Simulation of Anti-Penetration of Al/CFRP/Hybrid Honeycomb Aluminum Composite Sandwich Multilayer Structure

  • 摘要: 结合金属/复合材料层合结构的抗侵彻能力,基于混合蜂窝结构低成本、高韧性以及在低速冲击下吸能的特点,设计了一种Al/CFRP(carbon fiber reinforced plastics)/混合蜂窝铝复合夹芯多层结构,旨在利用各层结构特点,逐步降低弹体速度,高效吸收弹体动能,以达到防护效果。为探究Al/CFRP/混合蜂窝铝复合夹芯多层结构在弹体侵彻下的损伤演化规律及吸能特性,开展了Al/CFRP/混合蜂窝铝复合夹芯多层结构在弹体侵彻下的数值分析,探讨了冲击能量对多层结构抗侵彻性能的影响。结果表明:与Al/CFRP复合结构相比,引入混合蜂窝铝后,结构给予弹体的反作用力增大,在能量不变的情况下,弹体作用板的时间变短。在Al/CFRP/混合蜂窝铝复合夹芯多层结构抗侵彻过程中,Al板和CFRP芯层主要抵抗侵彻以降低弹体速度,混合蜂窝铝主要是吸能。在 40 J的冲击能量下,结构总吸能为36.79 J,比吸能为0.217 J/g,蜂窝铝芯层吸能占主要部分,吸能比率为30.3%;随着冲击能量的增大,蜂窝铝芯层的吸能比率增至56.2%,即冲击能量较大时蜂窝铝芯层的吸能效果更好。

     

  • 图  单一Al板的有限元模型

    Figure  1.  Finite element model of an Al plate

    图  数值模拟得到的Al板的力-位移曲线

    Figure  2.  Simulation results of force-displacement curves of Al plate

    图  Al板的破口形状和破口大小对比

    Figure  3.  Comparison of break shape and size of Al plate

    图  Al/CFRP/混合蜂窝铝夹芯结构的有限元模型

    Figure  4.  Finite element model of Al/CFRP/hybrid honeycomb aluminum sandwich structure

    图  Al板和Al/CFRP板的冲击力-时间曲线 (a)、冲击力-位移曲线 (b)、内能-时间曲线 (c)和动能-时间曲线 (d)

    Figure  5.  Force-time curves (a), force-displacement curves (b), internal energy-time curves (c) and kinetic energy-time curves (d) of Al plate and Al/CFRP panels

    图  弹体侵彻Al/CFRP板过程

    Figure  6.  Process of warhead penetration into Al/CFRP panels

    图  Al/CFRP/混合蜂窝铝复合夹芯多层结构的各层变形

    Figure  7.  Deformation of each layer of Al/CFRP/hybrid honeycomb aluminum composite sandwich multilayer structure

    图  Al/CFRP/混合蜂窝铝复合夹芯多层结构的冲击力-位移曲线 (a) 和吸能-时间曲线 (b)

    Figure  8.  Al/CFRP/hybrid honeycomb aluminum composite sandwich multilayer structure: (a) force-displacement curves, (b) energy absorption-time curves

    图  弹体侵彻Al/CFRP/混合蜂窝铝夹芯多层结构过程

    Figure  9.  Penetration process of Al/CFRP/hybrid honeycomb aluminum composite sandwich multilayer structure under projectile impact

    图  10  Al/CFRP/混合蜂窝铝夹芯多层结构的动能-时间曲线

    Figure  10.  Kinetic energy-time curves of Al/CFRP/honeycomb aluminum composite sandwich multilayer structure

    图  11  不同冲击能量下Al/CFRP/混合蜂窝铝复合夹芯多层结构的冲击力-位移曲线 (a)和吸能-时间曲线 (b)

    Figure  11.  Impact force-displacement curves (a) and energy absorption-time curves (b) of Al/CFRP/honeycomb aluminum composite sandwich multilayer structure at different impact energies

    图  12  不同冲击能量下Al/CFRP/混合蜂窝铝复合夹芯多层结构中各层的吸能比率

    Figure  12.  Energy absorption proportion of each layer of Al/CFRP/honeycomb aluminum composite sandwich multilayer structure at different impact energies

    表  1  7075-T651铝合金的材料参数以及Johnson-Cook本构模型和失效模型参数

    Table  1.   Material parameters, Johnson-Cook constitutive model and failure model parameters of 7075-T651 aluminum alloy

    $ \rho $/(kg·m−3)E/GPavA/MPaB/MPanmTm/K
    281071.70.335204770.521.61893
    Tt/KD1D2D3D4D5${\dot\varepsilon {_0}}$/s−1
    2930.0960.0493.4650.0161.0990.0005
    下载: 导出CSV

    表  2  40 J冲击能量下峰值应力与吸能对比

    Table  2.   Comparison of peak stress and energy absorption when the impact energy is 40 J

    CategoriesPeak force/kNEnergy absorption/J
    This paper3.4821.42
    Ref. [14]3.5822.08
    Error/%2.82.9
    下载: 导出CSV

    表  3  CFRP板的材料参数[16]

    Table  3.   Material parameters of CFRP plate[16]

    ρ/(kg·m−3)E11/GPaE12/GPaE13/GPaG12/GPaG13/GPaG23/GPaν12ν13
    15601419.79.75.25.23.40.340.34
    ν23Xt/MPaXc/MPaYt/MPaYc/MPaS12/MPaS13/MPaS23/MPa
    0.442703173781312575757
    下载: 导出CSV

    表  4  Al/CFRP/混合蜂窝铝复合夹芯多层结构的吸能情况

    Table  4.   Energy absorption of Al/CFRP/hybrid honeycomb aluminum composite sandwich multilayer structure

    Core layerEnergy absorption/JMass/gEnergy absorption ratio/%Specific energy absorption/(J·g−1)
    Upper aluminum plate9.3828.127.90.33
    CFRP9.5923.428.50.41
    Honeycomb aluminum10.2289.330.40.11
    Lower aluminum plate4.4728.113.20.16
    下载: 导出CSV

    表  5  冲击能量的影响

    Table  5.   Effect of impact energy

    Impact energy/JPeak force/kNMaximum displacement/mmEnergy absorption/JSpecific energy absorption/(J·g−1)
    4012.77.036.80.218
    8016.49.071.80.425
    12017.111.6107.00.633
    20017.216.1162.30.959
    下载: 导出CSV
  • [1] 孙卫兵. 纤维增强复合材料层合板抗高速破片侵彻性能研究 [D]. 武汉: 武汉理工大学, 2020.

    SUN W B. Research on penetration resistance of fiber reinforced composite laminates under high-speed fragments [D]. Wuhan: Wuhan University of Technology, 2020.
    [2] LI L J, SUN L Y, WANG T K, et al. Repeated low-velocity impact response and damage mechanism of glass fiber aluminium laminates [J]. Aerospace Science and Technology, 2019, 84: 995–1010. doi: 10.1016/j.ast.2018.11.038
    [3] 马小敏, 李世强, 李鑫, 等. 编织Kevlar/Epoxy复合材料层合板在冲击荷载下的动态响应 [J]. 爆炸与冲击, 2016, 36(2): 170–176. doi: 10.11883/1001-1455(2016)02-0170-07

    MA X M, LI S Q, LI X, et al. Dynamic response of woven Kevlar/Epoxy composite laminates under impact loading [J]. Explosion and Shock Waves, 2016, 36(2): 170–176. doi: 10.11883/1001-1455(2016)02-0170-07
    [4] 金子明, 沈峰, 曲志敏, 等. 纤维增强复合材料抗弹性能研究 [J]. 纤维复合材料, 1999, 16(3): 5–9.

    JIN Z M, SHEN F, QU Z M, et al. A study of anti-ballistic properties of FRP [J]. Fiber Composites, 1999, 16(3): 5–9.
    [5] ZHOU J J, WEN P H, WANG S N. Numerical investigation on the repeated low-velocity impact behavior of composite laminates [J]. Composites Part B: Engineering, 2020, 185: 107771. doi: 10.1016/j.compositesb.2020.107771
    [6] JAROSLAW B, BARBARA S, PATRYK J. The comparison of low-velocity impact resistance of aluminum/carbon and glass fiber metal laminates [J]. Polymer Composites, 2016, 37(4): 1056–1063. doi: 10.1002/pc.23266
    [7] RYAN S, SCHAEFER F, DESTEFANIS R, et al. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures [J]. Advances in Space Research, 2008, 41(7): 1152–1166. doi: 10.1016/j.asr.2007.02.032
    [8] CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shields [J]. International Journal of Impact Engineering, 1993, 14(1): 145–156. doi: 10.1016/0734-743X(93)90016-Z
    [9] ZHANG D H, FEI Q G, ZHANG P W. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor [J]. Composite Structures, 2017, 168: 633–645. doi: 10.1016/j.compstruct.2017.02.053
    [10] MORADA G, OUADDAY R, VADEAN A, et al. Low-velocity impact resistance of ATH/epoxy core sandwich composite panels: experimental and numerical analyses [J]. Composites Part B: Engineering, 2017, 114: 418–431. doi: 10.1016/j.compositesb.2017.01.070
    [11] GUO K L, ZHU L, LI Y G, et al. Experimental investigation on the dynamic behaviour of aluminum foam sandwich plate under repeated impacts [J]. Composite Structures, 2018, 200: 298–305. doi: 10.1016/j.compstruct.2018.05.148
    [12] XU M M, HUANG G Y, DONG Y X, et al. An experimental investigation into the high velocity penetration resistance of CFRP and CFRP/aluminium laminates [J]. Composite Structures, 2018, 188: 450–460. doi: 10.1016/j.compstruct.2018.01.020
    [13] 朱倩. 纤维金属层板抗高速冲击性能及损伤机理研究 [D]. 镇江: 江苏大学, 2020.

    ZHU Q. Study on impact resistance and damage mechanism of fiber metal laminates under high velocity impact [D]. Zhenjiang: Jiangsu University, 2020.
    [14] 李毅翔. Al/CFRP混杂层合板抗低速冲击性能研究 [D]. 长沙: 湖南大学, 2020.

    LI Y X. Study on low velocity impact resistance of Al/CFRP hybrid structures [D]. Changsha: Hunan University, 2020.
    [15] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664
    [16] 刘礼平, 段科好, 徐卓, 等. 碳纤维增强树脂基复合材料层合板胶螺混合连接失效机制 [J]. 复合材料学报, 2023, 40(1): 592–602. doi: 10.13801/j.cnki.fhclxb.20220215.001

    LIU L P, DUAN K H, XU Z, et al. Failure mechanism of carbon fiber reinforced polymer bonded-bolted hybrid connection [J]. Acta Materiae Compositae Sinica, 2023, 40(1): 592–602. doi: 10.13801/j.cnki.fhclxb.20220215.001
    [17] XU M C, LIU D B, WANG P D, et al. In-plane compression behavior of hybrid honeycomb metastructures: theoretical and experimental studies [J]. Aerospace Science and Technology, 2020, 106: 106081. doi: 10.1016/j.ast.2020.106081
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  81
  • PDF下载量:  56
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2022-11-20
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回