不同应变率和碳纳米管掺量下混凝土的力学性质与能量演化特征

黄山秀 陈小羊 张传祥 郭佳奇

李涛, 刘明涛, 王晓燕, 陈浩玉, 王鹏来. 装配垫层与间隙对爆轰加载下金属飞片运动特征的影响[J]. 高压物理学报, 2018, 32(4): 044202. doi: 10.11858/gywlxb.20170576
引用本文: 黄山秀, 陈小羊, 张传祥, 郭佳奇. 不同应变率和碳纳米管掺量下混凝土的力学性质与能量演化特征[J]. 高压物理学报, 2023, 37(1): 014101. doi: 10.11858/gywlxb.20220654
LI Tao, LIU Mingtao, WANG Xiaoyan, CHEN Haoyu, WANG Penglai. Effects of Explosive Device with Foam Cushion and Air Clearance on Kinetic Characteristic of Steel Flyer under Detonation Loading[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044202. doi: 10.11858/gywlxb.20170576
Citation: HUANG Shanxiu, CHEN Xiaoyang, ZHANG Chuanxiang, GUO Jiaqi. Mechanical Properties and Energy Evolution Characteristics of Concrete under Different Strain Rates and Content of MWCNTs[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014101. doi: 10.11858/gywlxb.20220654

不同应变率和碳纳米管掺量下混凝土的力学性质与能量演化特征

doi: 10.11858/gywlxb.20220654
基金项目: 国家自然科学基金(52178388);企业委托项目(JG-013)
详细信息
    作者简介:

    黄山秀(1984-),女,硕士,讲师,主要从事碳材料、高性能混凝土及固废资源化利用等研究.E-mail:hsx3168@163.com

    通讯作者:

    张传祥(1970-),男,博士,教授,主要从事矿物加工、煤基炭材料及其电化学应用等研究.E-mail:zcx223@163.com

  • 中图分类号: O347.4; TU.45

Mechanical Properties and Energy Evolution Characteristics of Concrete under Different Strain Rates and Content of MWCNTs

  • 摘要: 为研究应变率(加载速率)和多壁碳纳米管掺量对碳纳米管混凝土试样力学性质、能量演化规律及损伤破坏特征的影响,采用RMT-150B岩石力学试验系统,对不同应变率下不同碳纳米管掺量的混凝土试样开展了系列单轴压缩试验。试验结果表明:碳纳米管混凝土试样的延性随着多壁碳纳米管掺量的增加而增大;当应变率恒定时,多壁碳纳米管掺量为0.1%的改性碳纳米管混凝土的单轴抗压强度最大;当多壁碳纳米管掺量恒定时,应变率为5×10−3 s−1(0.5 mm/s)时碳纳米管混凝土试样的单轴抗压强度最大;当应变率较大时,在试样峰值应力处,碳纳米管混凝土的能量耗散值占总能量的28.29%;当应变率较小时,试样峰前阶段的能量耗散现象显著,峰值应力处耗散能占比平均高达37.34%;当应变率和多壁碳纳米管掺量均较小时,碳纳米管混凝土在破坏前所吸收的能量大量转化为耗散能,峰后试样能量释放率较小,表现为局部张拉与剪切混合破坏特征;当应变率和多壁碳纳米管掺量均较大时,碳纳米管混凝土在破坏前所吸收的能量主要储存为可释放弹性应变能,在破坏时混凝土试样的能量释放速率较高,碳纳米管混凝土试样破坏时较为破碎,一定程度上表现出冲击破坏的特征。

     

  • 夹芯结构由于具有较好的吸能缓冲性能以及较高的比强度和比刚度,被广泛应用于航空航天、交通运输、航海等领域。近年来随着对夹芯板研究的不断深入,提出了各种桁架夹芯和褶皱型夹芯等形式。其中,层级结构思想引起了众多学者的关注。Lakes[1]通过研究发现,层级结构与非层级结构相比具有更加显著的刚度和强度,同时也具有足够的稳定性及可靠性。Zhang等[2-3]通过梯形波纹板夹芯结构的静态压缩和低速冲击实验,研究了不同芯层材料、不同载荷下结构的能量吸收和变形过程,结果表明不同芯层材料和冲击能量下结构的能量吸收性能不同。Hou等[4]对不同层数的梯形夹芯板结构进行了实验研究,发现不同层数结构的能量吸收性能不同。Meza等[5]对多层级桁架结构的演变模式进行了分析,提出了几种不同结构的破坏形式和变形模式。Kooistra等[6]研究了层级波纹板结构的6种失效模式,并给出了结构在不同相对密度及角度下的破坏机理图。Velea等[7]提出了一种制备二级夹芯结构的方法,将一级波纹板结构芯层替换为多孔填充芯层,通过实验和理论分析发现,二级结构有着良好的刚度和强度。Wu等[8]将金字塔型夹芯结构的芯层替换为层级夹芯结构,理论推导出了结构的等效刚度,通过实验研究了芯层几何参数对结构变形模式的影响,并总结出结构的6种不同变形模式。Wu等[9]设计了二级金字塔形夹芯结构,进行了理论分析和数值模拟,结果表明二级芯层结构具有较好的强度和稳定性。Liu等[10]将传统格栅夹芯结构芯层板替换为蜂窝夹芯结构,通过实验研究和数值模拟研究发现,在压缩载荷下二级芯层结构有着较好的能量吸收性能和稳定的变形性能,在轻量化和能量吸收方面具有更好的工程应用前景。

    多孔结构及蜂窝结构有着良好的力学性能和能量吸收性能[11]。Jing等[12]通过实验研究了3种不同多孔芯层夹芯板结构在脉冲载荷下夹芯板的变形模式,结果表明不同芯层夹芯结构的变形模式不同,芯层和面板尺寸不同的夹芯结构的力学性能不同。Chen等[13-14]根据层级蜂窝结构的设计理论设计了不同芯层形式的层级蜂窝结构,并由理论分析得到结构变形模式,利用有限元对结构变形模式进行了验证,与传统蜂窝结构相比,层级蜂窝结构具有更好的能量吸收性能。Yin[15]、Qiao[16]等利用有限元软件对层级蜂窝结构进行了数值模拟,研究结果表明层级蜂窝结构的力学性能远优于传统蜂窝。

    已有的研究主要集中于传统波纹板夹芯结构和层级蜂窝结构,关于多层级夹芯结构的力学性能与能量吸收的研究较少。本研究基于波纹板夹芯结构,设计了3种二级波纹板夹芯结构,通过理论分析和数值模拟相结合的方法研究一级和二级夹芯结构的变形模式与能量吸收性能,理论预测结构的临界失效载荷;建立不同芯层层数的二级波纹板夹芯结构的有限元模型,研究不同芯层厚度对多层级波纹板夹芯结构变形模式和能量吸收性能的影响,并与传统的一级夹芯波纹板结构进行对比,分析其比吸能与结构效率。

    根据层级蜂窝结构的设计理论,将一级梯形波纹板夹芯结构的芯层替换为三角形多孔夹芯结构,共设计了3种芯层结构,如图1所示。图1(a)为一级波纹板夹芯结构的芯层,斜板长度为la,顶板长度为l,斜板角度为ω,芯层板厚度为ta;二级结构的芯层如图1(b)图1(c)图1(d)所示,其中图1(b)为二级单层结构,图1(c)图1(d)分别为二级双层和三层结构,二级结构芯层由大支撑面板和小支撑构成,水平方向小支撑为横向小支撑。二级结构中不同层数结构的尺寸参数相同,斜向大支撑面板长度为la,厚度为ta,小支撑长度为lb,厚度为tb,小支撑与外板角度均为θ,外板与水平方向夹角为ω。结构垂直于纸面方向的厚度为30 mm。

    图  1  芯层结构模型设计
    Figure  1.  Corrugated core design of sandwich structure

    小支撑厚度与大支撑面板厚度相同的结构模型如图2所示,在外部载荷FxFy作用下考虑横向小支撑的变形,基于小变形假设,由受力分析可以得到结构变形和力之间的关系,通过几何分析可以得到合力与变形之间的关系

    图  2  结构单胞受力示意图
    Figure  2.  Force diagram of structural unit cell
    {Fx2=Fncosω+FtsinωFy2=FnsinωFtcosω
    (1)
    {δx=δncosω+δtsinωδy=δnsinωδtcosω
    (2)

    式中:FxFy分别为沿x轴和y轴的外部载荷,δxδy为沿x轴和y轴的变形,FnFt分别为夹芯夹层在外部载荷下的轴向压缩分量和剪切分量,δnδt分别为夹芯夹层的轴向变形和剪切变形。

    当只有Fx作用时,δy=0,δx≠0,此时有

    Fn=EAδnl=Fx2cosω
    (3)
    δn=FnlEA
    (4)

    式中:EA为夹芯夹层截面的抗拉刚度。由结构几何关系可知

    δx=δncosω
    (5)

    当只有Fy作用时,δy≠0,δx=0,此时有

    Fn=EAδnl=Fy2sinω
    (6)

    同样有

    δy=δnsinω
    (7)

    当结构芯层为二级结构时,如图2(d)所示,(1)式~(7)式仍然成立。根据文献[17]给出的不同尺寸比下结构的失效机制,当lb/la>εy/πsinθ(其中εy为材料屈服应变)时层级结构出现大支撑面板塑性屈服的失效模式。本研究中结构模型的尺寸满足上述条件,因此失效模式为大支撑面板发生塑性屈服,即大支撑面板达到材料屈服应力时结构失效。由(1)式和(2)式可得单胞结构大支撑面板在y方向上发生塑性屈服时结构的合力

    Fy=(2n+2)σybtasinω
    (8)

    式中:n为二级结构层数,b为结构垂直于纸面方向的厚度,σy为屈服应力。

    根据结构变形模式,考虑横向小支撑的变形,如图3所示,Fb为横向小支撑在y方向的力,δbδny方向的分量,由此可知

    图  3  小支撑变形示意图
    Figure  3.  Deformation diagram of the horizontal small supporter
    δb=Fbl3b3D
    (9)

    弯曲刚度

    D=Et3b12(1ν2)
    (10)

    式中:E为弹性模量,ν为泊松比。由此可以得到

    Fb=2nσyt3bsinω4(1ν2)l2b
    (11)

    式中:tblb分别为二级结构芯层小支撑厚度和长度。二级结构单胞在y方向的合力为

    Fy=Fy+Fb
    (12)

    有限元模型主要包括3部分:刚性压板、刚性支撑底板和波纹板夹芯结构。波纹板夹芯结构由芯层和上、下面板构成,上、下面板设置为刚体,厚度为2 mm。图4为二级双层结构有限元模型。波纹板夹芯结构和下部底板采用壳单元,刚性压板采用实体单元。刚性压板速度V=1 m/s,下部刚性底板固定,中部波纹板夹芯结构芯层与上、下两面板之间采用绑定约束。结构材料为铝合金6061-T6,材料参数如表1所示,其中ρ为密度。图5为材料应力-应变曲线[6]。结构单元类型采用四节点线性缩减积分壳单元(S4R),单元特征长度L=1 mm。芯层和上、下面板为自接触,刚性压板与上面板、底板与下面板为面面接触,静摩擦系数和动摩擦系数分别为0.20和0.15[18]

    图  4  层级波纹板夹芯结构有限元模型
    Figure  4.  Finite element model of the hierarchical corrugated core sandwich structure
    表  1  6061-T6铝合金材料性能
    Table  1.  Material properties of aluminum 6061-T6
    Materialρ/(g·cm–3)σy/MPaE/GPaν
    Al 6061-T62.700251690.33
    下载: 导出CSV 
    | 显示表格
    图  5  6061-T6铝合金材料的应力-应变曲线
    Figure  5.  Stress-strain curve of Al 6061-T6

    利用LS-DYNA进行准静态分析时[19]:首先在模拟过程中结构动能要相对于内能较小,其次结构的力-位移曲线相对于速度的变化是稳定的。如图6(a)所示,结构在压板速度为0.5 m/s和1.0 m/s时动能相对于内能较小,结构整体内能受速度变化的影响较小;图6(b)为结构在压板速度为0.5 m/s和1.0 m/s时的力-位移曲线,可以看出两条曲线的重合度较高,速度变化对结构力-位移曲线的影响较小。通过对结构进行网格敏感性验证,并考虑到计算时间等因素,计算时取压板的速度为1.0 m/s,网格单元尺寸为1 mm。

    图  6  准静态分析
    Figure  6.  Quasi-static simulation

    为了评估结构的能量吸收性能[20],选取总能量吸收(EA)、平均载荷(Pm)、比吸能(ξEA)、载荷效率(AE)4个评价指标。

    总能量吸收EA为结构在变形过程中吸收的能量

    EA=δ0F(x)dx
    (13)

    式中:δ为结构的变形位移(取δ=70 mm),F(x)为压缩过程中的瞬时载荷。

    平均载荷Pm定义为单位变形长度的能量吸收

    Pm=EA/δ
    (14)

    比吸能ξEA定义为结构单位质量的能量吸收

    ξEA=EA/m
    (15)

    式中:m为结构总质量。比吸能越大,结构的能量吸收性能越好。

    载荷效率定义为平均载荷与峰值载荷的比值

    AE=Pm/Pk
    (16)

    式中:Pk为峰值载荷。较好的吸能结构应该具有较大的载荷效率,并且力-位移曲线波动较小。

    建立一级和二级结构模型,其中一级结构芯层壁厚为2 mm,二级结构模型中ta=tb,即二级结构内部小支撑厚度与外部大支撑面板厚度相同。层级结构芯层板厚度分别为0.565、0.75、1.00、1.25 mm,结构几何参数如表2所示。图7给出了一级和二级层级结构在不同芯层板厚度下的力-位移曲线。由图7可知,二级结构平台力明显高于一级结构。一级结构在靠近芯层上部产生塑性铰,随着变形的增大未产生新的塑性铰,力-位移曲线变化平稳。二级结构随着变形增大发生折叠塑性变形,力-位移曲线会随之发生波动;在芯层厚度为1.25 mm时二级单层结构由于变形模式发生变化,力-位移曲线发生波动而随之上升;随着二级结构层数的增加,结构平台力增大;随着二级结构厚度的增大,其平台力增大。

    表  2  模型尺寸
    Table  2.  Size parameters of the model
    Typel/mmla/mmlb/mmta/mmtb/mmθ/(°)ω/(°)
    First order50100260
    Second order-150100100.565/0.75/1.00/1.250.565/0.75/1.00/1.256060
    Second order-250100100.565/0.75/1.00/1.250.565/0.75/1.00/1.256060
    Second order-350100100.565/0.75/1.00/1.250.565/0.75/1.00/1.256060
    下载: 导出CSV 
    | 显示表格
    图  7  不同芯层厚度结构力-位移曲线
    Figure  7.  Force-displacement curves of the structure with different core thicknesses

    图8所示为不同芯层厚度下结构失效载荷理论值与模拟值的对比。对于数值模拟结果,当结构的承载力达到峰值时认为结构失效,即取力-位移曲线上的峰值载荷为结构失效载荷,可以看出理论值与模拟值吻合较好。当结构厚度为0.565 mm时,由于其厚度较小,在压缩载荷下的变形模式受屈曲影响较大,故理论值较模拟值偏大;当结构厚度为1.25 mm时,小支撑端部变形受边界条件的影响较大,理论值相对于模拟值偏小。

    图  8  结构失效载荷对比
    Figure  8.  Comparison of structural failure loads

    图9所示为芯层板厚度t=2 mm时一级结构在不同应变下的变形模式,应变为结构在受载荷方向上的变形位移与结构上、下两面板之间原始距离之比。由图9可知:一级结构首先发生屈曲,在靠近芯层斜支撑上部产生塑性铰,随着变形的增大,结构发生失稳,从而产生非对称变形。图10所示为二级结构在应变为0.3时不同芯层厚度下的变形模式,可以看出:当厚度较小时,结构的变形发生在整体斜支撑与整体水平支撑的交界处,整体斜支撑内部的小支撑发生逐层折叠的塑性变形;当芯层厚度为1.25 mm时,结构斜支撑整体产生塑性铰而发生非对称变形;厚度变化对二级双层和三层结构的变形模式影响较小。在芯层厚度较小时,二级结构主要为小支撑整体逐层发生塑性变形,从而有更多能量转换为非弹性能,提高了结构整体的能量吸收能力。

    图  9  一级结构变形模式
    Figure  9.  Deformation modes of the first structure
    图  10  不同芯层厚度下结构的变形模式
    Figure  10.  Deformation modes of structure with different core thicknesses

    二级结构变形模式主要为小支撑逐层折叠的塑性变形,相对于一级结构,其在变形过程中小支撑不断发生塑性变形产生塑性铰,从而有更多的能量转换为非弹性能,提高了结构的能量吸收性能。图11为不同芯层厚度结构的比吸能柱状图。由图11可知:层级波纹板夹芯结构的比吸能高于传统波纹板夹芯结构;随着结构芯层厚度增大,结构的比吸能不断提高;由于二级单层结构变形模式的变化,芯层厚度较小时二级单层结构的比吸能高于二级双层及三层结构,厚度较大时二级单层结构的比吸能低于二级双层及三层结构;二级双层结构的比吸能略高于二级三层结构。

    图  11  结构的比吸能柱状图
    Figure  11.  Specific energy absorption column graph of the structure

    图12为结构载荷效率随芯层厚度的变化关系。随着芯层厚度的增大,结构的载荷效率提高,二级单层结构由于变形模式的变化,载荷效率发生波动。由于二级单层结构在芯层厚度为1.25 mm时结构变形模式为斜支撑整体发生失稳,相对于小支撑发生折叠变形时其能量吸收性能降低,从力-位移曲线可以看出,结构平台力减小导致结构的载荷效率下降。二级双层和三层结构的载荷效率不断增加,二级三层结构的载荷效率高于二级双层结构。

    图  12  结构的载荷效率
    Figure  12.  Load efficiency of the structure

    设计了不同层数的层级波纹板夹芯结构,利用数值模拟方法研究了在压缩载荷下层级夹芯结构的变形规律与能量吸收性能,理论推导了结构临界失效载荷公式;分析了结构参数对其变形模式和能量吸收性能的影响,并与一级结构进行了对比分析,得到如下研究结果。

    (1)理论分析得到的结构失效载荷与数值模拟结果吻合较好。

    (2)在准静态压缩载荷作用下,一级结构首先发生屈曲,随着变形增大,结构发生失稳而产生非对称变形;二级单层结构在厚度为1.25 mm时由于芯层整体产生塑性铰而失稳;二级双层和二级三层结构在整体斜支撑与整体水平支撑的交界处,整体斜支撑内部的小支撑发生逐层折叠的塑性变形。

    (3)二级波纹板夹芯结构的比吸能显著大于一级结构;二级结构芯层小支撑发生逐层折叠的塑性变形时,结构能量吸收性能较好;随着芯层厚度的增大,二级结构的比吸能和载荷效率增加,芯层厚度较小时二级单层结构的比吸能高于二级双层和三层结构,二级双层结构的比吸能略大于二级三层结构。

  • 图  不同碳纳米管掺量混凝土试样的多应变率单轴压缩试验

    Figure  1.  Uniaxial compression tests under multi strain rate for concrete with different mixing ratios of MWCNTs

    图  不同应变率和MWCNTs掺量下混凝土的应力-应变曲线

    Figure  2.  Stress-strain curves of MWCNTs-reinforced concrete under different strain rates and MWCNTs content

    图  不同应变率和MWCNTs掺量下碳纳米管混凝土的单轴抗压强度

    Figure  3.  Uniaxial compression strength (UCS) of concrete with MWCNTS under different strain rates and MWCNTs content

    图  碳纳米管混凝土单轴压缩过程中UdUe的关系

    Figure  4.  Relationship between Ud and Ue during uniaxial compression of concrete with MWCNTs

    图  不同应变率下碳纳米管混凝土的能量演化特征

    Figure  5.  Energy evolution characteristics of MWCNTs-reinforced concrete under different strain rates

    图  不同应变率和MWCNTs掺量下混凝土试样在峰值应力处的能量特征

    Figure  6.  Energy characteristics of concrete at peak stress under different strain rates and MWCNTs content

    图  不同应变率和MWCNTs掺量下碳纳米管混凝土的破坏模式

    Figure  7.  Failure modes of MWCNTs-reinforced concrete under different strain rates and MWCNTs content

    表  1  碳纳米管混凝土试样配合比及各原料质量

    Table  1.   Mixing ratio of MWCNTs-reinforced concrete specimen and mass of each raw material

    No.w/%Water-cement ratioMass/g
    WaterCementRiver sandCoarse aggregateMWCNTs
    A00.433.9584.78109.51243.740
    B0.050.433.9584.78109.51243.740.0424
    C0.100.433.9584.78109.51243.740.0848
    D0.300.433.9584.78109.51243.740.2543
    E0.500.433.9584.78109.51243.740.4239
    下载: 导出CSV
  • [1] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述 [J]. 建筑科学与工程学报, 2014, 31(3): 1–24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete [J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1–24. doi: 10.3969/j.issn.1673-2049.2014.03.002
    [2] 金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望 [J]. 浙江大学学报(工学版), 2002, 36(4): 371–380, 403. doi: 10.3785/j.issn.1008-973X.2002.04.006

    JIN W L, ZHAO Y X. State-of-the-art on durability of concrete structures [J]. Journal of Zhejiang University (Engineering Science), 2002, 36(4): 371–380, 403. doi: 10.3785/j.issn.1008-973X.2002.04.006
    [3] 王彩辉, 蒋金洋, 任春福, 等. 基于无机纳米混凝土的研究进展 [J]. 材料导报, 2011, 25(Suppl 1): 41–44, 67.

    WANG C H, JIANG J Y, REN C F, et al. The study progress of inorganic nano-concrete [J]. Materials Reports, 2011, 25(Suppl 1): 41–44, 67.
    [4] 范杰, 熊光晶, 李庚英. 碳纳米管水泥基复合材料的研究进展及其发展趋势 [J]. 材料导报, 2014, 28(11): 142–148.

    FAN J, XIONG G J, LI G Y. Progress in research and development of carbon nanotubes-reinforced cement-based composite materials [J]. Materials Reports, 2014, 28(11): 142–148.
    [5] 王建雷, 赵云里, 和晓博, 等. 碳纳米管对混凝土性能的影响研究 [J]. 硅酸盐通报, 2016, 35(7): 2193–2197. doi: 10.16552/j.cnki.issn1001-1625.2016.07.036

    WANG J L, ZHAO Y L, HE X B, et al. Influence of carbon nanotubes on the properties of concrete [J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2193–2197. doi: 10.16552/j.cnki.issn1001-1625.2016.07.036
    [6] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56–58. doi: 10.1038/354056a0
    [7] 王宝民, 韩瑜, 葛树奎, 等. 碳纳米管在水性体系中的分散性能及机理 [J]. 哈尔滨工程大学学报, 2014, 35(10): 1206–1211. doi: 10.3969/j.issn.1006-7043.201303081

    WANG B M, HAN Y, GE S K, et al. Research on the dispersibility and mechanism of carbon nanotubes in aqueous solution [J]. Journal of Harbin Engineering University, 2014, 35(10): 1206–1211. doi: 10.3969/j.issn.1006-7043.201303081
    [8] 刘巧玲, 李汉彩, 彭玉娇, 等. 多壁碳纳米管增强水泥基复合材料的纳米力学性能 [J]. 复合材料学报, 2020, 37(4): 952–961. doi: 10.13801/j.cnki.fhclxb.20190730.004

    LIU Q L, LI H C, PENG Y J, et al. Nanomechanical properties of multi-wall carbon nanotubes/cementitious composites [J]. Acta Materiae Compositae Sinica, 2020, 37(4): 952–961. doi: 10.13801/j.cnki.fhclxb.20190730.004
    [9] SINDU B S, SASMAL S. Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants [J]. Construction and Building Materials, 2017, 155: 389–399.
    [10] 施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展 [J]. 复合材料学报, 2018, 35(5): 1033–1049. doi: 10.13801/j.cnki.fhclxb.20180328.003

    SHI T, ZHU M, LI Z X, et al. Review of research progress on carbon nanotubes modified cementitious composites [J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1033–1049. doi: 10.13801/j.cnki.fhclxb.20180328.003
    [11] JUNG M, LEE Y S, HONG S G, et al. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE) [J]. Cement and Concrete Research, 2020, 131: 106017. doi: 10.1016/j.cemconres.2020.106017
    [12] 刘洋洋, 孙敏, 冯芳, 等. 改性碳纳米管的掺入对混凝土力学性能的影响 [J]. 混凝土与水泥制品, 2018(2): 26–30. doi: 10.3969/j.issn.1000-4637.2018.02.006

    LIU Y Y, SUN M, FENG F, et al. Influence of modified carbon nanotubes on mechanical properties of concrete [J]. China Concrete and Cement Products, 2018(2): 26–30. doi: 10.3969/j.issn.1000-4637.2018.02.006
    [13] 牛晓伟, 王永维, 李强, 等. 多壁碳纳米管/水性环氧树脂复合改性多孔水泥混凝土性能研究 [J]. 公路, 2017, 62(1): 174–179.

    NIU X W, WANG Y W, LI Q, et al. Research on multi-walled carbon nanotubes/epoxy resin composite modification of porous cement concrete performance [J]. Highway, 2017, 62(1): 174–179.
    [14] 刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征 [J]. 高压物理学报, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622

    LIU P F, FAN J Q, GUO J Q, et al. Damage and energy evolution characteristics of granite under triaxial stress [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622
    [15] ZHANG Z Z, GAO F. Experimental investigation on the energy evolution of dry and water-saturated red sandstones [J]. International Journal of Mining Science and Technology, 2015, 25(3): 383–388. doi: 10.1016/j.ijmst.2015.03.009
    [16] 李忠友, 刘元雪, 姚志华, 等. 基于能量耗散原理的混凝土力学损伤模型 [J]. 土木工程学报, 2019, 52(Suppl 1): 23–30. doi: 10.15951/j.tmgcxb.2019.s1.004

    LI Z Y, LI Y X, YAO Z H, et al. Mechanical damage model for concrete based on energy dissipation [J]. China Civil Engineering Journal, 2019, 52(Suppl 1): 23–30. doi: 10.15951/j.tmgcxb.2019.s1.004
    [17] 王美英, 郭腾翔. 单轴压缩下混凝土的能量储存和耗散规律研究 [J]. 中国测试, 2022, 48(6): 143–147.

    WANG M Y, GUO T X. A study of the energy storage and dissipation laws of concrete under uniaxial compression [J]. China Measurement & Test, 2022, 48(6): 143–147.
    [18] 韩辰悦, 庞建勇. 不同应变率下橡胶混凝土抗压性能及能量特性研究 [J]. 硅酸盐通报, 2022, 41(3): 922–930. doi: 10.16552/j.cnki.issn1001-1625.20220113.001

    HAN C Y, PANG J Y. Compressive properties and energy characteristics of rubber concrete under different strain rates [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 922–930. doi: 10.16552/j.cnki.issn1001-1625.20220113.001
    [19] 袁璞, 朱益胜. 不同龄期碱矿渣陶粒混凝土抗压强度试验与能量特征分析 [J]. 硅酸盐通报, 2022, 41(7): 2292–2298. doi: 10.16552/j.cnki.issn1001-1625.20220510.001

    YUAN P, ZHU Y S. Compressive strength test and energy characteristics analysis of alkali slag ceramsite concrete at different ages [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2292–2298. doi: 10.16552/j.cnki.issn1001-1625.20220510.001
    [20] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    [21] SOLECKI R, CONANT R J. Advanced mechanics of materials [M]. London: Oxford University Press, 2003.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  161
  • PDF下载量:  38
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2022-09-23
  • 网络出版日期:  2022-12-30
  • 刊出日期:  2023-02-05

目录

/

返回文章
返回