四方相PbTeO3晶体在高压下的压缩行为

法志湘 王文丹 黎傲 于少楠 王李平

法志湘, 王文丹, 黎傲, 于少楠, 王李平. 四方相PbTeO3晶体在高压下的压缩行为[J]. 高压物理学报, 2023, 37(1): 011102. doi: 10.11858/gywlxb.20220646
引用本文: 法志湘, 王文丹, 黎傲, 于少楠, 王李平. 四方相PbTeO3晶体在高压下的压缩行为[J]. 高压物理学报, 2023, 37(1): 011102. doi: 10.11858/gywlxb.20220646
FA Zhixiang, WANG Wendan, LI Ao, YU Shaonan, WANG Liping. Compression Behavior of Tetragonal PbTeO3 Crystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 011102. doi: 10.11858/gywlxb.20220646
Citation: FA Zhixiang, WANG Wendan, LI Ao, YU Shaonan, WANG Liping. Compression Behavior of Tetragonal PbTeO3 Crystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 011102. doi: 10.11858/gywlxb.20220646

四方相PbTeO3晶体在高压下的压缩行为

doi: 10.11858/gywlxb.20220646
基金项目: 国家自然科学基金(51402245);四川省中央引导地方科技发展专项(2021ZYD0027);西南交通大学原创性科研仪器设备研制项目(XJ2021KJZK055,XJ2021KJZK052)
详细信息
    作者简介:

    法志湘(1998-),女,硕士研究生,主要从事高温高压下材料的物性研究. E-mail:afxxya@163.com

    通讯作者:

    王文丹(1981-),男,博士,副教授,主要从事高压下新材料的合成及物性测试研究. E-mail:wendan.wang@swjtu.edu.cn

  • 中图分类号: O521.2

Compression Behavior of Tetragonal PbTeO3 Crystals under High Pressure

  • 摘要: 利用水热法在230 ℃以及水的饱和蒸汽压条件下合成出毫米尺寸的四方相PbTeO3单晶样品,并研究了其晶体结构、微观形貌、热稳定性等性质。利用金刚石对顶砧和同步辐射原位X射线衍射技术,探讨了该四方相PbTeO3晶体在高压下的压缩行为,发现在0~37 GPa的压力范围内四方相PbTeO3无相变发生。拟合该PbTeO3样品的压力-体积数据,得到其体弹模量为B0=42(1) GPa,体弹模量的一阶导数$B_0' $=5.5(0.2)。晶格参数随压力的变化显示,该晶体在c轴方向更易压缩。

     

  • 图  四方相PbTeO3晶体的光学照片(a)及SEM图像(b)

    Figure  1.  Optical photograph (a) and SEM image (b) of tetragonal PbTeO3

    图  四方相PbTeO3在常温常压下的XRD谱(λ=1.59059 Å;黑色“×”、红色实线、蓝色实线、绿色“ | ”分别表示实验数据、计算出的衍射图、细化残差和衍射峰位置;插图显示常温常压XRD谱中存在较微弱的(010)和(111)衍射峰)

    Figure  2.  XRD pattern of tetragonal PbTeO3 under room temperature and ambient pressure (λ=1.59059 Å. Black “×”, red solid line, blue solid line and green “|” represent experimental data, calculated diffraction patterns, residuals of the refinement and peak positions, respectively. The illustration shows that the XRD spectra collected at room temperature and ambient pressure has week diffraction peaks at position (010) and (111).)

    图  室温下四方相PbTeO3的晶体结构

    Figure  3.  Crystal structure of tetragonal PbTeO3 at room temperature

    图  常压下四方相PbTeO3的DSC曲线

    Figure  4.  DSC curves of tetragonal PbTeO3 at ambient pressure

    图  四方相PbTeO3 样品在不同温度下再烧结的粉末XRD谱

    Figure  5.  Powder XRD patterns of tetragonal PbTeO3 samples reheated at different temperatures

    图  室温下采集的不同压力下四方相PbTeO3的XRD谱

    Figure  6.  XRD patterns of tetragonal PbTeO3 collected at room temperature and different pressures

    图  四方相PbTeO3在0.71 GPa下的XRD谱(λ=0.4133 Å,黑色“×”、红色实线、蓝色实线、绿色“ | ”分别表示实验数据、计算出的衍射图、细化残差和衍射峰位置)

    Figure  7.  XRD pattern of tetragonal PbTeO3 at 0.71 GPa (λ=0.4133 Å. Black “×”, red solid line, blue solid line and green “|” represent experimental data, calculated diffraction patterns, residuals of the refinement and peak positions, respectively.)

    图  四方相PbTeO3在37.5 GPa下的XRD谱(λ=0.4133 Å,黑色“×”、红色实线、蓝色实线、绿色 “ | ”分别表示实验数据、计算出的衍射图、细化残差和衍射峰位置)

    Figure  8.  XRD pattern of tetragonal PbTeO3 at 37.5 GPa (λ=0.4133 Å. Black “×”, red solid line, blue solid line and green “|” represent experimental data, calculated diffraction patterns, residuals of the refinement and peak positions, respectively.)

    图  四方相PbTeO3的晶格参数随压力的变化

    Figure  9.  Variations of lattice parameters of tetragonal PbTeO3 with pressure

    图  10  四方相PbTeO3的相对体积随压力的变化

    Figure  10.  Variation of relative volume of tetragonal PbTeO3 with pressure

    表  1  室温下四方相PbTeO3的结构参数

    Table  1.   Structural parameters of tetragonal PbTeO3 at room temperature

    AtomSitexyzUiso2
    Pb14a0.745(5)0.752(6)−0.057(2) 0.007(1)
    Te14a0.753(4)0.246(6)0.200(7)0.003(5)
    O24a0.648(4)0.014(5)0.152(9)0.071(9)
    O14a0.879(3)0.485(8)0.125(2)0.038(2)
    O34a0.976(4)0.220(3)0.287(2)0.056(8)
    Note: P41, a=b=5.318(2) Å, c=11.946(9) Å, V=337.906(3) Å3, α=β=γ=90°, Rwp=7.14%, Rp=5.56%.
    下载: 导出CSV

    表  2  0.71 GPa下四方相PbTeO3的结构参数

    Table  2.   Structural parameters of tetragonal PbTeO3 at 0.71 GPa

    AtomSitexyzUiso2
    Pb14a0.752(1)0.746(8)0.391(1)0.010(6)
    Te14a0.789(8)0.238(8)0.618(7)0.006(5)
    O24a1.059(8)0.676(9)0.225(7)0.080(1)
    O14a0.419(4)0.068(8)0.155(3)0.080(3)
    O34a0.917(8)0.386(4)0.251(9)0.297(8)
    Note: P41(76), a=b=5.2388(1) Å, c=11.7442(1) Å, V=322.3211(2) Å3, α=β=γ=90°, Rwp=8.47%, Rp=6.36%.
    下载: 导出CSV

    表  3  37.5 GPa下四方相PbTeO3的结构参数

    Table  3.   Structural parameters of tetragonal PbTeO3 at 37.5 GPa

    AtomSitexyzUiso2
    Pb14a0.802(8)0.725(2)0.396(9)0.282(7)
    Te14a0.806(5)0.263(9)0.606(4)0.037(6)
    O24a1.568(1)0.675(5)0.278(3)0.088(5)
    O14a0.605(6)0.008(2)0.071(4)0.090(1)
    O34a1.078(5)0.345(7)0.228(4)0.008(1)
    Note: P41(76), a=b=4.7167(6) Å, c=10.538(3) Å, V=234.455(3)Å3, α=β=γ=90°, Rwp=4.36%, Rp=3.43%.
    下载: 导出CSV

    表  4  四方相PbTeO3及一些相关铅氧化物的体弹模量$B{_0} $

    Table  4.   Bulk modulus $B{_0} $ of PbTeO3 and several related lead oxides

    Compound B0/GPa
    PhaseⅠPhase Ⅱ(perovskite)
    PbNiO3184(3)[4]166(8)[4]
    PbCrO359(5)[5]187(4)[5]
    PbTiO3104(4)[32]141(5)[32]
    PbVO361(2)[33]155(3)[33]
    PbTeO342(1)
    下载: 导出CSV
  • [1] SHIMONI-LIVNY L, GLUSKER J P, BOCK C W. Lone pair functionality in divalent lead compounds [J]. Inorganic Chemistry, 1998, 37(8): 1853–1867. doi: 10.1021/ic970909r
    [2] HAMANI D, MASSON O, THOMAS P. Localization and steric effect of the lone electron pair of the tellurium Te4+ cation and other cations of the p-block elements: a systematic study [J]. Journal of Applied Crystallography, 2020, 53(5): 1243–1251. doi: 10.1107/S1600576720010031
    [3] PYYKKO P. Relativistic effects in structural chemistry [J]. Chemical Reviews, 1988, 88(3): 563–594. doi: 10.1021/cr00085a006
    [4] WANG W D, WANG S M, HE D W, et al. Pressure induced phase transition of PbNiO3 from LiNbO3-type to perovskite [J]. Solid State Communications, 2014, 196(1): 8–12.
    [5] XIAO W S, TAN D Y, XIONG X L, et al. Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(32): 14026–14029. doi: 10.1073/pnas.1005307107
    [6] WANG W D, HE D W, XIAO W S, et al. Electrical characterization in the phase transition between cubic PbCrO3 perovskites at high pressures [J]. Chinese Physics Letters, 2013, 30(11): 117201. doi: 10.1088/0256-307X/30/11/117201
    [7] KOHN K, INOUE K, HORIE O, et al. Crystal chemistry of MSeO3 and MTeO3 (M= Mg, Mn, Co, Ni, Cu, and Zn) [J]. Journal of Solid State Chemistry, 1976, 18(1): 27–37. doi: 10.1016/0022-4596(76)90075-X
    [8] LI Y, HAN Y H, MA Y Z, et al. Pressure effects on grain boundary, electrical and vibrational properties of the polycrystalline BaTeO3 [J]. Europhysics Letters, 2012, 98(6): 66006. doi: 10.1209/0295-5075/98/66006
    [9] BALDINOZZI G, SCIAU P, MORET J, et al. A new incommensurate phase in a lead ordered perovskite: Pb2MgTeO6 [J]. Solid State Communications, 1994, 89(5): 441–445. doi: 10.1016/0038-1098(94)90209-7
    [10] RAI R S, SHARMA S, CHOUDHARY R N P. Structural and electrical properties of magnesium tellurite ceramics [J]. Ferroelectrics, 2002, 275(1): 11–18. doi: 10.1080/00150190214284
    [11] YAMADA T, AHAREN T, KANEMITSU Y. Near-band-edge optical responses of CH3NH3PbCl3 single crystals: photon recycling of excitonic luminescence [J]. Physical Review Letters, 2018, 120(5): 057404. doi: 10.1103/PhysRevLett.120.057404
    [12] DITYATIEV O A, BERDONOSOV P S, DOLGIKH V A, et al. On the crystal structures of SrTeO3 [J]. Solid State Sciences, 2006, 8(7): 830–835. doi: 10.1016/j.solidstatesciences.2006.03.003
    [13] RAI R, SHARMA S, CHOUDHARY R N P. Ferroelectric phase transition in calcium tellurite ceramics [J]. Journal of Materials Science Letters, 2002, 21(4): 297–299. doi: 10.1023/A:1017923820691
    [14] POUPON M, BARRIER N, PETIT S, et al. Hydrothermal synthesis and dehydration of CaTeO3 (H2O): an original route to generate new CaTeO3 polymorphs [J]. Inorganic Chemistry, 2015, 54(12): 5660–5670. doi: 10.1021/acs.inorgchem.5b00037
    [15] DITYAT’EV O A, STEFANOVICH S Y, PRITUZHALOV V A, et al. Dielectric and nonlinear optical properties of SrTeO3-based solid solutions [J]. Inorganic Materials, 2004, 40(7): 740–743. doi: 10.1023/B:INMA.0000034774.16227.cb
    [16] BERGMAN J G, BOYD G D, ASHKIN A, et al. New nonlinear optical materials: metal oxides with nonbonded electrons [J]. Journal of Applied Physics, 1969, 40(7): 2860–2863. doi: 10.1063/1.1658089
    [17] WILLIAMS S A. Schieffelinite, a new lead tellurate-sulphate from Tombstone, Arizona [J]. Mineralogical Magazine, 1980, 43(330): 771–773. doi: 10.1180/minmag.1980.043.330.11
    [18] WEIL M, SHIRKHANLOU M, FÜGLEIN E, et al. Determination of the correct composition of “hydrous lead (Ⅱ) oxotellurate (Ⅳ)” as PbTeO3, crystallizing as a new polymorph [J]. Crystals, 2018, 8(1): 51. doi: 10.3390/cryst8010051
    [19] MARIOLACOS K. Die kristallstruktur von PbTeO3 [J]. Anzeiger der Österreichische Akademie der Wissenschaften Mathematisch-Naturwissenschatliche Klasse, 1969, 106(1): 129–130.
    [20] ROBERTSON D S, SHAW N, YOUNG I M. A study of crystals in the lead oxide/tellurium dioxide system [J]. Journal of Physics D: Applied Physics, 1976, 9(8): 1257. doi: 10.1088/0022-3727/9/8/012
    [21] KOSSE L, POLITOVA E, BUSH A, et al. Growth and some peculiarities of beta-PbTeO3 single-crystals [J]. Kristallografiya, 1983, 28(3): 510–513.
    [22] YOUNG I M. The central region of the PbO-TeO2 phase diagram [J]. Journal of Materials Science, 1979, 14(7): 1579–1585. doi: 10.1007/BF00569277
    [23] KOSSE L, POLITOVA E, ASTAF’EV A, et al. Growth and electrophysical properties of some Pb-Te-O single crystals [J]. Soviet Physics Solid State, 1983, 25(7): 1170–1171.
    [24] SCIAU P, LAPASSET J, MORET J. Structure de la phase quadratique de PbTeO3 [J]. Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42(12): 1688–1690. doi: 10.1107/S0108270186090923
    [25] GAITÁN M, JEREZ A, NOGUERALES P, et al. New methods of synthesis of mixed oxides of Te and Pb: characterization of the new phases PbTeO3 (cubic) and PbTeO4 (orthorhombic) [J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1987, 17(5): 479–490. doi: 10.1080/00945718708070212
    [26] STAVRAKIEVA D, IVANOVA Y, PYROV J. On the composition of the crystal phases in the PbO-TeO2 system [J]. Journal of Materials Science, 1988, 23(5): 1871–1876. doi: 10.1007/BF01115733
    [27] MA Y, WANG W D, LIU Q J, et al. Raman studies in tetragonal structure PbTeO3 [J]. Solid State Communications, 2017, 260(1): 1–5.
    [28] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(5): 4673–4676.
    [29] HEMLEY R J, ZHA C S, JEPHCOAT A P, et al. X-ray diffraction and equation of state of solid neon to 110 GPa [J]. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(16): 11820–11827. doi: 10.1103/PhysRevB.39.11820
    [30] FINGER L W, HAZEN R M, ZOU G, et al. Structure and compression of crystalline argon and neon at high pressure and room temperature [J]. Applied Physics Letters, 1981, 39(11): 892–894. doi: 10.1063/1.92597
    [31] LEVY D, PAVESE A, SANI A, et al. Structure and compressibility of synthetic ZnAl2O4 (gahnite) under high-pressure conditions, from synchrotron X-ray powder diffraction [J]. Physics and Chemistry of Minerals, 2001, 28(9): 612–618. doi: 10.1007/s002690100194
    [32] ZHU J L, XU H W, ZHANG J Z, et al. Thermal equations of state and phase relation of PbTiO3: a high P-T synchrotron X-ray diffraction study [J]. Journal of Applied Physics, 2011, 110(8): 084103. doi: 10.1063/1.3651377
    [33] ZHOU W, TAN D, XIAO W, et al. Structural properties of PbVO3 perovskites under hydrostatic pressure conditions up to 10.6 GPa [J]. Journal of Physics: Condensed Matter, 2012, 24(43): 435403. doi: 10.1088/0953-8984/24/43/435403
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  123
  • PDF下载量:  45
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-09-19
  • 网络出版日期:  2023-02-24
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回