Compression Behavior of Tetragonal PbTeO3 Crystals under High Pressure
-
摘要: 利用水热法在230 ℃以及水的饱和蒸汽压条件下合成出毫米尺寸的四方相PbTeO3单晶样品,并研究了其晶体结构、微观形貌、热稳定性等性质。利用金刚石对顶砧和同步辐射原位X射线衍射技术,探讨了该四方相PbTeO3晶体在高压下的压缩行为,发现在0~37 GPa的压力范围内四方相PbTeO3无相变发生。拟合该PbTeO3样品的压力-体积数据,得到其体弹模量为B0=42(1) GPa,体弹模量的一阶导数
$B_0' $ =5.5(0.2)。晶格参数随压力的变化显示,该晶体在c轴方向更易压缩。Abstract: The millimeter-size tetragonal PbTeO3 single crystal was synthesized by hydrothermal method under saturated vapor pressure of water at 230 °C. Crystal structure, microscopic morphology, thermal stability and other properties of the sample were studied. The compression behavior of the tetragonal PbTeO3 crystal under high pressure was investigated by diamond anvil cell (DAC) with in-situ synchrotron X-ray diffraction. The results show there is no phase transition observed in the tetragonal PbTeO3 up to 37 GPa. Using the Birch-Murnaghan equation of state to fit the observed pressure-volume data of the tetragonal PbTeO3 sample, a bulk modulus B0=42(1) GPa,$ B_0'$ =5.5(0.2) for tetragonal phase was obtained. The variation of lattice parameters with pressure shows that the crystal is easier to compress in the c-axis direction.-
Key words:
- tetragonal PbTeO3 /
- crystal stracture /
- equation of state /
- bulk modulus
-
图 2 四方相PbTeO3在常温常压下的XRD谱(λ=1.59059 Å;黑色“×”、红色实线、蓝色实线、绿色“ | ”分别表示实验数据、计算出的衍射图、细化残差和衍射峰位置;插图显示常温常压XRD谱中存在较微弱的(010)和(111)衍射峰)
Figure 2. XRD pattern of tetragonal PbTeO3 under room temperature and ambient pressure (λ=1.59059 Å. Black “×”, red solid line, blue solid line and green “|” represent experimental data, calculated diffraction patterns, residuals of the refinement and peak positions, respectively. The illustration shows that the XRD spectra collected at room temperature and ambient pressure has week diffraction peaks at position (010) and (111).)
图 7 四方相PbTeO3在0.71 GPa下的XRD谱(λ=0.4133 Å,黑色“×”、红色实线、蓝色实线、绿色“ | ”分别表示实验数据、计算出的衍射图、细化残差和衍射峰位置)
Figure 7. XRD pattern of tetragonal PbTeO3 at 0.71 GPa (λ=0.4133 Å. Black “×”, red solid line, blue solid line and green “|” represent experimental data, calculated diffraction patterns, residuals of the refinement and peak positions, respectively.)
图 8 四方相PbTeO3在37.5 GPa下的XRD谱(λ=0.4133 Å,黑色“×”、红色实线、蓝色实线、绿色 “ | ”分别表示实验数据、计算出的衍射图、细化残差和衍射峰位置)
Figure 8. XRD pattern of tetragonal PbTeO3 at 37.5 GPa (λ=0.4133 Å. Black “×”, red solid line, blue solid line and green “|” represent experimental data, calculated diffraction patterns, residuals of the refinement and peak positions, respectively.)
表 1 室温下四方相PbTeO3的结构参数
Table 1. Structural parameters of tetragonal PbTeO3 at room temperature
Atom Site x y z Uiso/Å2 Pb1 4a 0.745(5) 0.752(6) −0.057(2) 0.007(1) Te1 4a 0.753(4) 0.246(6) 0.200(7) 0.003(5) O2 4a 0.648(4) 0.014(5) 0.152(9) 0.071(9) O1 4a 0.879(3) 0.485(8) 0.125(2) 0.038(2) O3 4a 0.976(4) 0.220(3) 0.287(2) 0.056(8) Note: P41, a=b=5.318(2) Å, c=11.946(9) Å, V=337.906(3) Å3, α=β=γ=90°, Rwp=7.14%, Rp=5.56%. 表 2 0.71 GPa下四方相PbTeO3的结构参数
Table 2. Structural parameters of tetragonal PbTeO3 at 0.71 GPa
Atom Site x y z Uiso/Å2 Pb1 4a 0.752(1) 0.746(8) 0.391(1) 0.010(6) Te1 4a 0.789(8) 0.238(8) 0.618(7) 0.006(5) O2 4a 1.059(8) 0.676(9) 0.225(7) 0.080(1) O1 4a 0.419(4) 0.068(8) 0.155(3) 0.080(3) O3 4a 0.917(8) 0.386(4) 0.251(9) 0.297(8) Note: P41(76), a=b=5.2388(1) Å, c=11.7442(1) Å, V=322.3211(2) Å3, α=β=γ=90°, Rwp=8.47%, Rp=6.36%. 表 3 37.5 GPa下四方相PbTeO3的结构参数
Table 3. Structural parameters of tetragonal PbTeO3 at 37.5 GPa
Atom Site x y z Uiso/Å2 Pb1 4a 0.802(8) 0.725(2) 0.396(9) 0.282(7) Te1 4a 0.806(5) 0.263(9) 0.606(4) 0.037(6) O2 4a 1.568(1) 0.675(5) 0.278(3) 0.088(5) O1 4a 0.605(6) 0.008(2) 0.071(4) 0.090(1) O3 4a 1.078(5) 0.345(7) 0.228(4) 0.008(1) Note: P41(76), a=b=4.7167(6) Å, c=10.538(3) Å, V=234.455(3)Å3, α=β=γ=90°, Rwp=4.36%, Rp=3.43%. -
[1] SHIMONI-LIVNY L, GLUSKER J P, BOCK C W. Lone pair functionality in divalent lead compounds [J]. Inorganic Chemistry, 1998, 37(8): 1853–1867. doi: 10.1021/ic970909r [2] HAMANI D, MASSON O, THOMAS P. Localization and steric effect of the lone electron pair of the tellurium Te4+ cation and other cations of the p-block elements: a systematic study [J]. Journal of Applied Crystallography, 2020, 53(5): 1243–1251. doi: 10.1107/S1600576720010031 [3] PYYKKO P. Relativistic effects in structural chemistry [J]. Chemical Reviews, 1988, 88(3): 563–594. doi: 10.1021/cr00085a006 [4] WANG W D, WANG S M, HE D W, et al. Pressure induced phase transition of PbNiO3 from LiNbO3-type to perovskite [J]. Solid State Communications, 2014, 196(1): 8–12. [5] XIAO W S, TAN D Y, XIONG X L, et al. Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(32): 14026–14029. doi: 10.1073/pnas.1005307107 [6] WANG W D, HE D W, XIAO W S, et al. Electrical characterization in the phase transition between cubic PbCrO3 perovskites at high pressures [J]. Chinese Physics Letters, 2013, 30(11): 117201. doi: 10.1088/0256-307X/30/11/117201 [7] KOHN K, INOUE K, HORIE O, et al. Crystal chemistry of MSeO3 and MTeO3 (M= Mg, Mn, Co, Ni, Cu, and Zn) [J]. Journal of Solid State Chemistry, 1976, 18(1): 27–37. doi: 10.1016/0022-4596(76)90075-X [8] LI Y, HAN Y H, MA Y Z, et al. Pressure effects on grain boundary, electrical and vibrational properties of the polycrystalline BaTeO3 [J]. Europhysics Letters, 2012, 98(6): 66006. doi: 10.1209/0295-5075/98/66006 [9] BALDINOZZI G, SCIAU P, MORET J, et al. A new incommensurate phase in a lead ordered perovskite: Pb2MgTeO6 [J]. Solid State Communications, 1994, 89(5): 441–445. doi: 10.1016/0038-1098(94)90209-7 [10] RAI R S, SHARMA S, CHOUDHARY R N P. Structural and electrical properties of magnesium tellurite ceramics [J]. Ferroelectrics, 2002, 275(1): 11–18. doi: 10.1080/00150190214284 [11] YAMADA T, AHAREN T, KANEMITSU Y. Near-band-edge optical responses of CH3NH3PbCl3 single crystals: photon recycling of excitonic luminescence [J]. Physical Review Letters, 2018, 120(5): 057404. doi: 10.1103/PhysRevLett.120.057404 [12] DITYATIEV O A, BERDONOSOV P S, DOLGIKH V A, et al. On the crystal structures of SrTeO3 [J]. Solid State Sciences, 2006, 8(7): 830–835. doi: 10.1016/j.solidstatesciences.2006.03.003 [13] RAI R, SHARMA S, CHOUDHARY R N P. Ferroelectric phase transition in calcium tellurite ceramics [J]. Journal of Materials Science Letters, 2002, 21(4): 297–299. doi: 10.1023/A:1017923820691 [14] POUPON M, BARRIER N, PETIT S, et al. Hydrothermal synthesis and dehydration of CaTeO3 (H2O): an original route to generate new CaTeO3 polymorphs [J]. Inorganic Chemistry, 2015, 54(12): 5660–5670. doi: 10.1021/acs.inorgchem.5b00037 [15] DITYAT’EV O A, STEFANOVICH S Y, PRITUZHALOV V A, et al. Dielectric and nonlinear optical properties of SrTeO3-based solid solutions [J]. Inorganic Materials, 2004, 40(7): 740–743. doi: 10.1023/B:INMA.0000034774.16227.cb [16] BERGMAN J G, BOYD G D, ASHKIN A, et al. New nonlinear optical materials: metal oxides with nonbonded electrons [J]. Journal of Applied Physics, 1969, 40(7): 2860–2863. doi: 10.1063/1.1658089 [17] WILLIAMS S A. Schieffelinite, a new lead tellurate-sulphate from Tombstone, Arizona [J]. Mineralogical Magazine, 1980, 43(330): 771–773. doi: 10.1180/minmag.1980.043.330.11 [18] WEIL M, SHIRKHANLOU M, FÜGLEIN E, et al. Determination of the correct composition of “hydrous lead (Ⅱ) oxotellurate (Ⅳ)” as PbTeO3, crystallizing as a new polymorph [J]. Crystals, 2018, 8(1): 51. doi: 10.3390/cryst8010051 [19] MARIOLACOS K. Die kristallstruktur von PbTeO3 [J]. Anzeiger der Österreichische Akademie der Wissenschaften Mathematisch-Naturwissenschatliche Klasse, 1969, 106(1): 129–130. [20] ROBERTSON D S, SHAW N, YOUNG I M. A study of crystals in the lead oxide/tellurium dioxide system [J]. Journal of Physics D: Applied Physics, 1976, 9(8): 1257. doi: 10.1088/0022-3727/9/8/012 [21] KOSSE L, POLITOVA E, BUSH A, et al. Growth and some peculiarities of beta-PbTeO3 single-crystals [J]. Kristallografiya, 1983, 28(3): 510–513. [22] YOUNG I M. The central region of the PbO-TeO2 phase diagram [J]. Journal of Materials Science, 1979, 14(7): 1579–1585. doi: 10.1007/BF00569277 [23] KOSSE L, POLITOVA E, ASTAF’EV A, et al. Growth and electrophysical properties of some Pb-Te-O single crystals [J]. Soviet Physics Solid State, 1983, 25(7): 1170–1171. [24] SCIAU P, LAPASSET J, MORET J. Structure de la phase quadratique de PbTeO3 [J]. Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42(12): 1688–1690. doi: 10.1107/S0108270186090923 [25] GAITÁN M, JEREZ A, NOGUERALES P, et al. New methods of synthesis of mixed oxides of Te and Pb: characterization of the new phases PbTeO3 (cubic) and PbTeO4 (orthorhombic) [J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1987, 17(5): 479–490. doi: 10.1080/00945718708070212 [26] STAVRAKIEVA D, IVANOVA Y, PYROV J. On the composition of the crystal phases in the PbO-TeO2 system [J]. Journal of Materials Science, 1988, 23(5): 1871–1876. doi: 10.1007/BF01115733 [27] MA Y, WANG W D, LIU Q J, et al. Raman studies in tetragonal structure PbTeO3 [J]. Solid State Communications, 2017, 260(1): 1–5. [28] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(5): 4673–4676. [29] HEMLEY R J, ZHA C S, JEPHCOAT A P, et al. X-ray diffraction and equation of state of solid neon to 110 GPa [J]. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(16): 11820–11827. doi: 10.1103/PhysRevB.39.11820 [30] FINGER L W, HAZEN R M, ZOU G, et al. Structure and compression of crystalline argon and neon at high pressure and room temperature [J]. Applied Physics Letters, 1981, 39(11): 892–894. doi: 10.1063/1.92597 [31] LEVY D, PAVESE A, SANI A, et al. Structure and compressibility of synthetic ZnAl2O4 (gahnite) under high-pressure conditions, from synchrotron X-ray powder diffraction [J]. Physics and Chemistry of Minerals, 2001, 28(9): 612–618. doi: 10.1007/s002690100194 [32] ZHU J L, XU H W, ZHANG J Z, et al. Thermal equations of state and phase relation of PbTiO3: a high P-T synchrotron X-ray diffraction study [J]. Journal of Applied Physics, 2011, 110(8): 084103. doi: 10.1063/1.3651377 [33] ZHOU W, TAN D, XIAO W, et al. Structural properties of PbVO3 perovskites under hydrostatic pressure conditions up to 10.6 GPa [J]. Journal of Physics: Condensed Matter, 2012, 24(43): 435403. doi: 10.1088/0953-8984/24/43/435403