玻璃纤维/环氧乙烯基酯树脂复合材料的湿热老化力学性能

柏慧 惠虎 杨宇清

柏慧, 惠虎, 杨宇清. 玻璃纤维/环氧乙烯基酯树脂复合材料的湿热老化力学性能[J]. 高压物理学报, 2023, 37(1): 014103. doi: 10.11858/gywlxb.20220641
引用本文: 柏慧, 惠虎, 杨宇清. 玻璃纤维/环氧乙烯基酯树脂复合材料的湿热老化力学性能[J]. 高压物理学报, 2023, 37(1): 014103. doi: 10.11858/gywlxb.20220641
BAI Hui, HUI Hu, YANG Yuqing. Effect of Hygrothermal Aging on Mechanical Properties of Glass Fiber/Epoxy VER Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014103. doi: 10.11858/gywlxb.20220641
Citation: BAI Hui, HUI Hu, YANG Yuqing. Effect of Hygrothermal Aging on Mechanical Properties of Glass Fiber/Epoxy VER Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014103. doi: 10.11858/gywlxb.20220641

玻璃纤维/环氧乙烯基酯树脂复合材料的湿热老化力学性能

doi: 10.11858/gywlxb.20220641
基金项目: 上海市市场监督管理局科研项目(2019-28)
详细信息
    作者简介:

    柏 慧(1994-),女,博士,工程师,主要从事压力容器和管道结构的完整性及安全性研究.E-mail:baihui_118570@baosteel.com

  • 中图分类号: O347

Effect of Hygrothermal Aging on Mechanical Properties of Glass Fiber/Epoxy VER Composites

  • 摘要: 为掌握玻璃纤维/环氧乙烯基酯树脂复合材料经湿热老化后的力学性能,采用真空辅助注射成型技术,制作玻璃纤维/环氧乙烯基酯树脂复合材料层合板,并根据复合材料压力容器在服役过程中的受力特点,利用水切割技术将层合板制成弯曲和剪切试样。考虑到压力容器的使用工况,对试样进行浸泡加速老化试验,分析了在不同温度和周期下复合材料的质量和力学性能变化。结果表明,随着浸泡时间的增加,复合材料的弯曲和剪切性能逐渐降低。相比于浸泡时间的影响,温度对复合材料性能的影响更显著,如在90 ℃水中浸泡6周后,复合材料的剪切强度、弯曲强度以及弯曲模量降为初始值的1/2。

     

  • 图  真空辅助注射成型示意图

    Figure  1.  Diagram of vacuum assisted injection molding

    图  弯曲性能测试及夹具

    Figure  2.  Bending performance testing and fixture

    图  层合板在不同温度下的吸水率曲线

    Figure  3.  Water absorption rate curves of laminates at different temperatures

    图  不同温度和老化时间条件下弯曲试验得到的力-位移曲线

    Figure  4.  Force-displacement curves obtained from bending tests at different temperatures and aging time

    图  复合材料在不同温度和老化时间下的弯曲强度(a)和弯曲模量(b)

    Figure  5.  Bending strength (a) and bending modulus (b) of composites at different temperatures and aging time

    图  不同温度和老化时间下剪切试验得到的力-位移曲线

    Figure  6.  Force-displacement curves obtained from shear tests at different temperatures and aging time

    图  复合材料在不同温度和老化时间下的剪切强度和剪切强度增长率

    Figure  7.  Shear strength and its change rate of composites at different temperatures and aging time

    表  1  湿热老化试验方案

    Table  1.   Wet heat aging test program

    Temperature/℃Number of shear specimensNumber of bend specimens Temperature/℃Number of shear specimensNumber of bend specimens
    251818 9018 18
    501818Unaged33
    751818
    下载: 导出CSV

    表  2  复合材料在不同温度下的吸水参数

    Table  2.   Water absorption parameters of composites at different temperatures

    Temperature/℃${\omega }{_{\mathrm{s} } }$/%A/(10−6 mm2·s−1)D/(10−3 mm2·s−1)S/10−3
    250.722.061.172.41
    500.812.311.433.30
    750.952.711.925.20
    901.203.432.006.86
    下载: 导出CSV

    表  3  复合材料在不同温度和老化时间下的弯曲力学性能

    Table  3.   Bending mechanical properties of composites at different temperatures and aging time

    Temperature/℃Bending strength/MPa
    Unaged1 week2 weeks3 weeks4 weeks5 weeks6 weeks
    20663.21±35.76573.19±5.62 564.99±11.01546.40±20.46537.47±17.57531.71±4.20 497.96±44.22
    50663.21±35.76568.40±48.72557.23±32.80530.29±29.27527.81±23.14522.56±38.24480.33±26.20
    75663.21±35.76524.70±23.80474.84±23.54446.91±48.68403.94±56.79400.68±20.07383.33±7.14
    90663.21±35.76434.02±38.77387.33±15.31367.55±0.93 366.35±6.06 326.88±4.28 276.05±24.52
    Temperature/℃Bending modulus/GPa
    Unaged1 week2 weeks3 weeks4 weeks5 weeks6 weeks
    2014.32±0.7114.00±0.9213.54±0.4013.11±0.6613.14±0.5912.98±0.9712.08±1.28
    5014.32±0.7113.71±0.2712.91±0.5312.92±1.3712.61±0.3012.47±0.8310.64±0.71
    7514.32±0.7113.45±0.2211.80±0.0611.67±1.1111.42±0.4911.33±0.44 9.86±0.40
    9014.32±0.7110.89±1.1410.00±1.39 9.30±1.69 7.96±0.44 7.24±1.42 5.34±3.52
    下载: 导出CSV

    表  4  复合材料在不同温度和老化时间下的剪切力学性能

    Table  4.   Shear mechanical properties of composites at different temperatures and aging time

    Temperature/℃Shear strength/MPa
    Unaged1 week2 weeks3 weeks4 weeks5 weeks6 weeks
    2032.50±1.3230.00±6.4228.19±1.1427.28±2.2126.69±0.1124.73±1.7522.23±1.45
    5032.50±1.3229.78±2.8728.06±1.4926.59±0.3126.52±3.1422.46±1.7420.59±2.80
    7532.50±1.3228.00±6.3427.92±1.2926.73±3.4826.35±1.9124.21±0.9618.31±6.01
    9032.50±1.3227.46±1.3024.49±0.0724.01±1.3221.80±0.5719.87±2.5313.95±5.75
    Temperature/℃Shear strength change rate/%
    Unaged1 week2 weeks3 weeks4 weeks5 weeks6 weeks
    200−7.69±0.21−13.26±0.04−16.06±0.07−17.88±0.00−23.91±0.06−31.60±0.05
    500−8.37±0.09−13.66±0.10−18.18±0.06−18.40±0.05−30.89±0.10−36.65±0.06
    750−13.85±0.20 −14.09±0.04−17.75±0.11−18.92±0.03−25.51±0.03−43.66±0.19
    90015.51±0.04−24.65±0.02−26.12±0.04−32.92±0.02−38.86±0.08−57.08±0.18
    下载: 导出CSV
  • [1] HAN M G, CHANG S H. Failure analysis of a Type Ⅲ hydrogen pressure vessel under impact loading induced by free fall [J]. Composite Structures, 2015, 127: 288–297. doi: 10.1016/j.compstruct.2015.03.027
    [2] BAI H, YANG B, HUI H, et al. Experimental and numerical investigation of the strain response of the filament wound pressure vessels subjected to pressurization test [J]. Polymer Composites, 2019, 40(11): 4427–4441. doi: 10.1002/pc.25304
    [3] MARTINS A T, ABOURA Z, HARIZI W, et al. Structural health monitoring for GFRP composite by the piezoresistive response in the tufted reinforcements [J]. Composite Structures, 2019, 209: 103–111. doi: 10.1016/j.compstruct.2018.10.091
    [4] 耿运贵, 张永涛. 树脂基复合材料的应用与发展趋势 [J]. 河南理工大学学报(自然科学版), 2007, 26(2): 192–197. doi: 10.3969/j.issn.1673-9787.2007.02.016

    GENG Y G, ZHANG Y T. Current development and application of resin matrix composites [J]. Journal of Henan Polytechnic University (Natural Science), 2007, 26(2): 192–197. doi: 10.3969/j.issn.1673-9787.2007.02.016
    [5] CAO S H, WU Z, WANG X. Tensile properties of CFRP and hybrid FRP composites at elevated temperatures [J]. Journal of Composite Materials, 2009, 43(4): 315–330. doi: 10.1177/0021998308099224
    [6] 王恺, 吴茜, 汪文博, 等. 可重复使用复合材料气瓶设计及试验验证 [J]. 宇航材料工艺, 2018, 48(6): 16–20. doi: 10.12044/j.issn.1007-2330.2018.06.003

    WANG K, WU X, WANG W B, et al. Design and experimental verification of reusable composite pressure vessels [J]. Aerospace Materials and Technology, 2018, 48(6): 16–20. doi: 10.12044/j.issn.1007-2330.2018.06.003
    [7] 余建伟. 湿热环境下玻璃纤维片材耐久性试验研究 [D]. 绵阳: 西南科技大学, 2018.

    YU J W. Durability experimental investigation of glass fiber reinforced polymer sheet in hygrothermal environment [D]. Mianyang: Southwest University of Science and Technology, 2018.
    [8] ZHANG Y, VASSILOPOULOS A P, KELLER T. Environmental effects on fatigue behavior of adhesively-bonded pultruded structural joints [J]. Composites Science and Technology, 2009, 69(7/8): 1022–1028. doi: 10.1016/j.compscitech.2009.01.024
    [9] 阮润女, 程浩南. 玻璃纤维及其制品的应用与发展 [J]. 产业用纺织品, 2018, 36(7): 38–41, 46. doi: 10.3969/j.issn.1004-7093.2018.07.009

    RUAN R N, CHENG H N. Application and development of glass fiber and its products [J]. Technical Textiles, 2018, 36(7): 38–41, 46. doi: 10.3969/j.issn.1004-7093.2018.07.009
    [10] KASAAI M R, ARUL J, CHARLET G. Intrinsic viscosity-molecular weight relationship for chitosan [J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(19): 2591–2598. doi: 10.1002/1099-0488(20001001)38:19<2591::AID-POLB110>3.0.CO;2-6
    [11] NETRAVALI A N, FORNES R E, GILBERT R D, et al. Effects of water sorption at different temperatures on permanent changes in an epoxy [J]. Journal of Applied Polymer Science, 1985, 30(4): 1573–1578. doi: 10.1002/app.1985.070300422
    [12] 侯宗姊. 玻璃纤维增强热塑性树脂基复合材料的耐久性研究 [D]. 上海: 东华大学, 2019.

    HOU Z Z. A study on the durability of glass fiber reinforced thermoplastic composite [D]. Shanghai: Donghua University, 2019.
    [13] 张厉丰. 树脂基复合材料老化和疲劳寿命预测 [D]. 武汉: 武汉理工大学, 2013.

    ZHANG L F. Life prediction of ageing and fatigue for polymer composites [D]. Wuhan: Wuhan University of Technology, 2013.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  106
  • PDF下载量:  29
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2022-09-21
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回