电子雷管起爆条件下隧道掏槽孔与辅助孔的延时优化试验研究

李洪伟 吴延梦 吴立辉 杨赛群 管月强 黄昕旭 章万龙

谭叶, 肖元陆, 薛桃, 李俊, 金柯. 镁铝合金的冲击熔化行为实验研究[J]. 高压物理学报, 2019, 33(2): 020106. doi: 10.11858/gywlxb.20190729
引用本文: 李洪伟, 吴延梦, 吴立辉, 杨赛群, 管月强, 黄昕旭, 章万龙. 电子雷管起爆条件下隧道掏槽孔与辅助孔的延时优化试验研究[J]. 高压物理学报, 2023, 37(1): 015301. doi: 10.11858/gywlxb.20220638
TAN Ye, XIAO Yuanlu, XUE Tao, LI Jun, JIN Ke. Melting of MB2 Alloy under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020106. doi: 10.11858/gywlxb.20190729
Citation: LI Hongwei, WU Yanmeng, WU Lihui, YANG Saiqun, GUAN Yueqiang, HUANG Xinxu, ZHANG Wanlong. Experimental Study on Delay Time Optimization of Tunnel Cutting Holes and Caving Holes under Electronic Detonator Initiation Condition[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015301. doi: 10.11858/gywlxb.20220638

电子雷管起爆条件下隧道掏槽孔与辅助孔的延时优化试验研究

doi: 10.11858/gywlxb.20220638
基金项目: 国家自然科学基金(11872002);安徽省教育厅高校科学研究项目(13190248)
详细信息
    作者简介:

    李洪伟(1979-),男,硕士,教授,主要从事控制爆破技术研究. E-mail:1227002529@qq.com

    通讯作者:

    吴延梦(1999-),男,硕士研究生,主要从事岩石破碎理论与技术研究.E-mail:1904477218@qq.com

  • 中图分类号: O346.1; TD235

Experimental Study on Delay Time Optimization of Tunnel Cutting Holes and Caving Holes under Electronic Detonator Initiation Condition

  • 摘要: 起爆延时严重影响隧道爆破掘进效率,研究隧道精确控制爆破中岩石的破碎效果和掘进效率具有重要意义。为此,开展了隧道爆破中掏槽孔与辅助孔之间延时的相似模型试验研究,分析了不同起爆延时情况下岩石的破碎特征。模型试验表明,在隧道爆破中精确延时电子雷管对于提高爆破效果具有明显优势,得到了一定条件下模型试验与现场试验中起爆延时的相似关系。由现场试验可知:掏槽孔与辅助孔之间的最佳延时范围为15~25 ms,此时炮孔的利用率最高。结合相似理论的模型试验,得到最佳延时范围为8~24 ms,与现场试验结果具有较好的一致性,研究结果对隧道爆破掏槽孔与辅助孔之间的延时选取具有指导意义。

     

  • 镁铝合金(MB2)作为一类特殊的合金材料,具有低密度、高强度、易机械加工、耐腐蚀等特点,广泛应用于车辆工程、航空航天等领域,其动态加载下的力学和物理特性对相关结构设计等具有重要意义。国内外对MB2合金的早期研究主要集中于力学特性方面,通过开展低压动态响应特性实验研究,获得了材料的弹塑性响应[1]、动态损伤[2]及层裂行为[3]的初步认识,近年来Millett等[4]通过一维冲击加载研究了MB2合金在早期变形和位错条件下随加载应力、加载脉宽而变化的弹塑性和剪切强度行为。另外,对动态加载下MB2合金的物态方程及相变研究已开展了一系列工作,主要集中于冲击Hugoniot数据测量[5],然而与动态加载下物理、力学特性紧密相关的相变研究尚处于起步阶段。声速作为应力扰动在材料中传播的定量表征参量,是获知材料动态响应特性(如相变、屈服强度、剪切模量)的主要途径之一[67],然而相关的研究工作却鲜见报道。

    本研究拟采用反向碰撞实验技术[89],结合具有高时空分辨率的全光纤激光干涉测速技术DPS(Doppler Pin System)[10],对MB2合金开展30~73 GPa压力范围内的冲击Hugoniot及声速测量实验,并与早期实验数据进行对比验证,分析MB2合金的冲击熔化行为。

    本研究涉及低压力区的声速测量,为此采用反向碰撞实验设计,即将样品材料制作成飞片,撞击LiF透明窗口,其原理如图1所示。在拉氏坐标下,飞片以速度W直接撞击窗口(t=t1),在飞片和窗口中分别产生左行冲击波和右行冲击波,引起飞片/窗口界面粒子速度的突跃。当飞片中的左行冲击波到达后界面时,将反射中心稀疏波,该稀疏波的波速就是材料在冲击压缩下的声速。如果样品材料发生冲击熔化,则中心稀疏波将以单一塑性波的形式在样品内传播,并在飞片/窗口界面处(t=t2)发生卸载,引起粒子速度的下降。如果样品材料没有发生冲击熔化,则中心稀疏波包括传播速度较快的弹性波和传播速度相对较慢的塑性波。当传播速度较快的弹性卸载波到达飞片/窗口界面时(t=t2),界面粒子速度下降,在速度剖面上形成第1个拐点;当塑性卸载波到达飞片/窗口界面时(t=t3),界面粒子速度再次突变,在速度剖面上形成第2个拐点;当后续稀疏波陆续到达飞片/窗口界面时,会导致界面粒子速度的连续下降;如果在卸载过程中样品材料发生相变,则也会在速度剖面上形成拐点。

    图  1  反向碰撞实验示意图
    Figure  1.  Schematic of backward-impact experimental configuration

    根据图2所示的界面连续性条件(其中p为冲击压力,u为粒子速度),结合Rankine-Hugoniot关系[11],可以得到样品内的冲击波速度Ds

    图  2  反向碰撞实验p-u
    Figure  2.  p-u relation for backward-impact experiment
    Ds=ρ0wDwuwρ0s(Wuw)(1)

    式中:DρW分别为冲击波速度、密度和飞片速度,下标s和w分别对应样品和窗口。如果窗口材料的D-u曲线满足线性关系

    Dw=C0w+λwuw(2)

    式中:C0wλw为窗口材料的Hugoniot参数,则(1)式可表示为

    Ds=ρ0w(C0w+λwuw)uwρ0s(Wuw)
    (3)

    因此,只需要测得飞片(样品)击靶速度W和窗口的波后粒子速度uw,就可以获得样品的粒子速度usus=Wuw)和对应的冲击波速度Ds。随后,由波系作用(见图1(b))的几何关系可知,样品材料Hugoniot状态的拉格朗日纵波声速CL

    CL=DshsDst12hs
    (4)

    相应的欧拉纵波声速Cl

    Cl=DshsDst12hsDsusDs
    (5)

    式中:hs为样品厚度,下标1和2对应波剖面上不同的时间点。

    可以看到,反向碰撞法以波剖面测量为基础,波系作用简单,通过波剖面的粒子速度及时间信息得到高压声速,实验数据具有较高的精度,但是由于可供选择的窗口材料种类较少,目前使用的LiF窗口的阻抗较低,导致实验压力范围有限。

    实验在中国工程物理研究院流体物理研究所30 mm二级轻气炮上进行。将MB2合金飞片安装在弹丸上,将弹丸发射至稳定的弹道速度W,并撞击LiF单晶窗口,通过DPS测量飞片击靶速度以及飞片/窗口界面粒子速度,获得待测材料的冲击波速度和声速。为了提高测试界面对DPS入射光的反射效率,避免靶室残留气体对测试的干扰,窗口击靶面上镀1 μm厚的铝膜并贴8 μm厚铝箔。LiF窗口折射率修正采用Rigg等[12]的公式

    uw=0.7895×u0.9918
    (6)

    式中:uw代表修正后的窗口界面粒子速度,u代表实测界面粒子速度,二者单位均为km/s。其中LiF密度为2.638 g/cm3,冲击波速度D和粒子速度u的关系为D=5.150+1.352u(单位km/s)[5]

    图3给出了6发实验测得的MB2/LiF界面粒子速度剖面(平台高度随加载压力的增大而升高)。通过界面粒子速度剖面,由(1)式~(6)式可得MB2样品在30~73 GPa冲击压力范围内的冲击波速度-粒子速度和声速-压力数据,实验结果列于表1,其中密度采用排水法测量,实测值为(1.775±0.004) g/cm3。冲击波速度-粒子速度数据如图4所示,图中还显示了美国洛斯阿拉莫斯国家实验室(LASL)发表的实验数据[5]。从图4中可以看出,本研究获得的实验数据与已有实验数据具有较好的一致性。

    表  1  MB2样品冲击实验参数及结果
    Table  1.  Shock experiment parameters and results of MB2
    Exp.No. hs/mm W/(km·s–1) uw/(km·s–1) us/(km·s–1) Ds/(km·s–1) p/GPa Cl/(km·s–1)
    1 1.980±0.004 3.949±0.020 1.589±0.016 2.360±0.026 7.303±0.166 30.6±0.4 7.983±0.297
    2 1.997±0.004 4.358±0.020 1.763±0.018 2.595±0.027 7.607±0.175 35.0±0.5 9.101±0.394
    3 1.978±0.004 5.379±0.027 2.195±0.022 3.184±0.030 8.317±0.191 47.0±0.7 9.167±0.402
    4 1.981±0.004 5.928±0.030 2.435±0.024 3.493±0.039 8.746±0.214 54.2±0.9 8.912±0.380
    5 1.981±0.004 6.100±0.030 2.514±0.025 3.586±0.039 8.907±0.213 56.7±0.9 8.601±0.348
    6 1.987±0.004 7.220±0.036 3.003±0.030 4.217±0.050 9.747±0.245 73.0±1.2 9.723±0.463
    下载: 导出CSV 
    | 显示表格
    图  3  MB2/LiF界面粒子速度剖面
    Figure  3.  Particle velocity profile of MB2/LiF interface
    图  4  冲击波速度与粒子速度的关系
    Figure  4.  Shock velocity vs. particle velocity

    图3可以看到:6发实验测得的界面粒子速度剖面质量良好,粒子速度剖面对应的冲击波、卸载波到达样品/窗口界面的特征信号清晰;加载压力为30.6和35.0 GPa时卸载剖面的弹-塑性特征明显,表明MB2合金在该冲击压力下尚未完全熔化;随着加载压力的升高,卸载剖面的弹-塑性特征逐渐消失,当加载压力达到73.0 GPa时,弹-塑性卸载特征完全消失,表明MB2已完全进入熔化相区,与图5所示的不同加载压力下声速转变特征一致。

    图  5  声速与冲击压力的关系
    Figure  5.  Sound velocity vs. shock pressure

    图5所示,当加载压力由30.6 GPa增加到35.0 GPa时,纵波声速逐渐增大,由7.983 km/s增大至9.101 km/s;但是,当加载压力增大至47.0 GPa时,纵波声速逐渐向体波声速偏转,跃变为9.167 km/s,预示着随着加载压力的升高,材料内部的剪切效应减小,冲击熔化发生;直至压力达到56.7 GPa时,纵波声速转变为体波声速,由此进一步确认了冲击加载下MB2合金发生熔化。Urtiew等[13]通过理论预测MB2合金在57 GPa附近开始熔化,该结果与本研究根据声速判定的冲击熔化区域基本一致,从而进一步证实了MB2合金在该压力范围内发生冲击熔化,只是Urtiew等预估的理论压力略高。图5中的实线是根据以下公式[11]计算得到的体波声速曲线

    C2b=12V2(γV)HpHV2dpHdV[112(γV)H(V0VH)]
    (7)

    式中:Cb为体波声速;ργ分别为密度和Grüneisen系数,ργ=ρ0γ0ρ0为材料初始密度,γ0=1.43[14]图5中的虚线是基于吴-经方程[15]计算得到的体波声速曲线。可以看出,理论计算的体波声速曲线较冲击加载实验值偏低约10%。这主要是由于合金材料自身成键及结合能的影响,难以采用传统的混合法则或物理模型准确计算物态方程的基本参数,如Grüneisen系数等,由此导致理论预测结果与实验结果出现差异(通常理论值偏低)。

    根据不确定度传递关系[16],当全部直接测量量(输入量)Yi彼此独立不相关时,由其确定的间接测量量z的合成不确定度Δz由下式确定

    Δz2=Ni=1(fyi)2Δy2i
    (8)

    式中:yi为输入量Yi的直接测量值,z为被测量的测量值,fzyi的函数关系,N为输入量的总个数,Δyi为直接测量值的不确定度。因而,当密度为ρ0s、厚度为hs的飞片撞击窗口时,样品/窗口界面处粒子速度跳跃,实验测得飞片速度W、界面粒子速度uw、时间间隔(剖面平台)t12,相应的测量不确定度为Δρ0sΔhsΔWΔuwΔt12,而窗口Hugoniot参数(ρ0wC0wλw)的不确定度(Δρ0wΔC0wΔλw)已知。由于各测量量是独立测量的,(C0wλw)相互作用项较小,可忽略不计,据此可根据不确定度传递律确定声速测量的不确定度。

    图6所示,就该例反碰撞实验(No.2)而言,影响声速测量不确定度的因素很多,包括样品初始密度、厚度、飞片速度、界面粒子速度、追赶时间、窗口材料冲击Hugoniot参数等。样品内部冲击压缩状态(如粒子速度、冲击波速度、冲击压力等)均通过飞片速度、界面粒子速度及窗口Hugoniot参数计算获得,影响声速测量不确定度的主要因素在于飞片速度、界面粒子速度及稀疏波追赶时间(平台时间),所占比例(即对(8)式中各平方项求和,下同)约为声速测量不确定度的99%,其余如初始密度、厚度等参量在当前诊断水平下对声速测量不确定度的贡献较小,约占总体的1%。在现有诊断条件下,飞片速度采用DPS直接测量,测量扩展不确定度不大于0.5%;界面粒子速度剖面的测量不确定度主要受平台区速度及稀疏波追赶时间的影响,影响因素包含干涉信号数据转换精度、窗口折射率修正、起跳及卸载时刻的判断等,综合而言,平台区速度测量的扩展不确定度不大于1%,追赶时间测量的扩展不确定度约6 ns。总体而言,传递至声速的测量扩展不确定度不超过5%。

    图  6  反碰撞法测量声速实验中不确定度
    Figure  6.  Uncertainties for backward-impact experiment based on law of propagation

    采用反向碰撞实验技术,结合具有高时空分辨率的DPS,获得了MB2合金在30~73 GPa压力范围内的冲击Hugoniot及声速数据。随着加载压力的升高,MB2合金纵波声速呈现出明显的向体波声速转变的趋势,预示着材料内部的剪切效应逐渐减小,冲击熔化发生,其相变压力区间为40~57 GPa。该实验结果与不同加载压力下卸载波剖面对应的弹-塑性转变特征完全一致,由此进一步确认了冲击加载下MB2合金熔化相变的发生。

    感谢中国工程物理研究院流体物理研究所黄金、康强、叶素华、方茂林、向曜民、陈志云等在实验过程中给予帮助。

  • 图  模型试验中的炮孔布置

    Figure  1.  Hole layout in model experiment

    图  破碎效果

    Figure  2.  Crushing effect

    图  碎岩块度质量百分比统计

    Figure  3.  Statistic of fragmentation mass fraction

    图  爆后爆腔结果

    Figure  4.  Results of cavity after explosion

    图  原爆破设计方案

    Figure  5.  Original blasting design scheme

    图  原方案下的爆破效果

    Figure  6.  Blasting effect under original scheme

    图  现场炮孔分布(a)及装药现场(b)

    Figure  7.  Field blasthole distribution (a) and charge instructions (b)

    图  炮孔利用率

    Figure  8.  Blasthole utilization

    表  1  模型及现场岩石的相关参数

    Table  1.   Model and field rock-related parameters

    Materialρ/(kg·m−3)σc/MPaCp/(m·s−1)E/GPaμ
    Cast material208020.82982.117.10.177
    Rocks on site28401214900530.21
    下载: 导出CSV

    表  2  模型试验方案[21]

    Table  2.   Model test schemes[21]

    Schemeτ/msa/cmb/cmh1/cmd0/cmd1/cm
    T-105.010.013.02.01.2
    T-215.010.013.02.01.2
    T-335.010.013.02.01.2
    T-455.010.013.02.01.2
    下载: 导出CSV

    表  3  碎岩统计

    Table  3.   Rock fragmentation statistics

    SchemeMass/kg (Mass fraction/%)
    0–19.0 mm19.0–26.5 mm26.5–37.5 mm37.5–53.0 mm53.0–63.0 mm63.0–75.0 mm>75.0 mm
    T-11.60(13.66)0.62(5.83) 1.16(11.24)1.27(22.90)0.65(5.41)0.98(7.83)3.28(33.14)
    T-21.64(23.26)0.70(15.31)1.35(15.41)2.75(15.31)0.65(5.79)0.94(6.38)3.98(18.55)
    T-32.37(19.37)1.56(11.58)1.57(15.93)1.56(17.19)0.59(4.70)0.65(8.42)1.89(22.81)
    T-42.76(25.77)1.65(9.57) 2.27(13.58)2.45(12.65)0.67(2.62)1.20(6.56)3.25(29.24)
    下载: 导出CSV

    表  4  爆腔参数和炮孔利用率

    Table  4.   Cavity parameters and blast hole utilization rate

    SchemeBlast cavity volume/cm3Detonation depth/cmBlast hole utilization/%
    T-1796011.4087.7
    T-2676011.6389.5
    T-3945011.5989.2
    T-4859511.5288.6
    下载: 导出CSV

    表  5  原隧道爆破参数

    Table  5.   Original tunnel blasting parameters

    Serial numberName of holeτ/msd2/mmL1/ma1/cmW/kgd3/mmNQ/kg
    H0Holes in the middle 1002.200
    H1Kibble hole0422.2401.53246.0
    H2Pilot hole 130422.0801.33245.2
    H3Pilot hole 280422.0601.2321012.0
    H4Pilot hole 3130422.0601.23267.2
    H5Pilot hole 4180422.2701.2321619.2
    H6Pilot hole 5230422.2801.2321619.2
    H7Profile accuracy hole 1280422.2600.4322811.2
    H8Bottom hole 1330422.2901.43279.8
    H9Bottom hole 2380422.21001.532710.5
    下载: 导出CSV

    表  6  原方案爆破效果

    Table  6.   Blasting effect of original scheme

    Holela/mBu/% Holela/mBu/%
    Kibble hole0.2688.2 Profile accuracy hole0.3683.6
    Pilot hole0.3085.0Bottom hole0.4181.4
    下载: 导出CSV

    表  7  优化后起爆网路设计方案

    Table  7.   Optimized initiation network design scheme

    τ/msDelay time/ms
    H1H2H3H4H5H6H7H8H9
    3003080130180230280330380
    1501565115165215265315365
    2502575125175225275325375
    3503585135185235285335385
    4504595145195245295345395
    下载: 导出CSV

    表  8  炮孔利用率

    Table  8.   Blasthole utilization

    τ/msHoleL1/mla/mBu/%Bu,ave/%Cycle footage/m
    15Kibble hole2.20.1493.689.51.92
    Pilot hole2.00.1791.5
    Profile accuracy hole2.20.2688.2
    Bottom hole2.20.3484.5
    25Kibble hole2.20.1991.487.21.87
    Pilot hole2.00.2289.0
    Profile accuracy hole2.20.3285.5
    Bottom hole2.20.3882.7
    30 Kibble hole 2.2 0.26 88.2 84.6 1.82
    Pilot hole2.00.3085.0
    Profile accuracy hole2.20.3683.6
    Bottom hole2.20.4181.4
    35Kibble hole2.20.3086.482.71.78
    Pilot hole2.00.3483.0
    Profile accuracy hole2.20.4081.8
    Bottom hole2.20.4579.5
    45Kibble hole2.20.3683.679.51.71
    Pilot hole2.00.4080.0
    Profile accuracy hole2.20.4778.6
    Bottom hole2.20.5375.9
    下载: 导出CSV
  • [1] 中华人民共和国工业和信息化部. 关于推进民爆行业高质量发展的意见 [EB/OL]. (2018-11-13) [2022-08-11]. http://www.gov.cn/gongbao/content/2019/content_5366488.htm.

    Ministry of Industry and Information Technology of the People’s Republic of China. Opinions on promoting high quality development of civil explosion industry [EB/OL]. (2018-11-13)[2022-08-11]. http://www.gov.cn/gongbao/content/2019/content_5366488.htm.
    [2] 中华人民共和国工业和信息化部. 工业数码电子雷管标准体系建设方案(试行) [EB/OL]. (2021-10-27) [2021-11-02]. https://wap.miit.gov.cn/jgsj/aqs/gzdt/art/2021/art_f93f3384a8444e15b1beecdd7ae4cf6a.html.

    Ministry of Industry and Information Technology of the People’s Republic of China. Industrial digital electronic detonator standard system construction scheme (Trial) [EB/OL]. (2021-10-27) [2021-11-02]. https://wap.miit.gov.cn/jgsj/aqs/gzdt/art/2021/art_f93f3384a8444e15b1beecdd7ae4cf6a.html.
    [3] 李创新, 刘仕佳, 常根召, 等. 电子雷管推广使用问题探究 [J]. 煤矿爆破, 2018, 36(2): 14–16. doi: 10.3969/j.issn.1674-3970.2018.02.005

    LI C X, LIU S J, CHANG G Z, et al. Research on the use of electronic detonators [J]. Coal Mine Blasting, 2018, 36(2): 14–16. doi: 10.3969/j.issn.1674-3970.2018.02.005
    [4] 姚华南. 电子雷管在巷道掘进中的应用研究 [J]. 煤矿爆破, 2021, 39(4): 25–28. doi: 10.3969/j.issn.1674-3970.2021.04.008

    YAO H N. Application of electronic detonator in tunnel excavation [J]. Coal Mine Blasting, 2021, 39(4): 25–28. doi: 10.3969/j.issn.1674-3970.2021.04.008
    [5] 吴献明, 李中辉, 张文锡, 等. 数码电子雷管与非电导爆管雷管在露天深孔爆破中的应用对比 [J]. 西部探矿工程, 2021, 33(11): 14–16. doi: 10.3969/j.issn.1004-5716.2021.11.005

    WU X M, LI Z H, ZHANG W X, et al. Application comparison of digital electronic detonator and non-conductive detonator in open pit deep hole blasting [J]. West-China Exploration Engineering, 2021, 33(11): 14–16. doi: 10.3969/j.issn.1004-5716.2021.11.005
    [6] CHO S H, KANEKO K. Influence of the applied pressure waveform on the dynamic fracture processes in rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 771–784. doi: 10.1016/j.ijrmms.2004.02.006
    [7] HUANG D, QIU X Y, SHI X Z, et al. Experimental and numerical investigation of blast-induced vibration for short-delay cut blasting in underground mining [J]. Shock and Vibration, 2019(2): 5843516. doi: 10.1155/2019/5843516
    [8] 黄宝龙. 岩巷掘进准直眼掏槽爆破试验研究 [D]. 北京: 中国矿业大学(北京), 2011.

    HUANG B L. Research on quasi-parallel cutting blast in rock drivage [D]. Beijing: China University of Mining and Technology (Beijing), 2011.
    [9] 单仁亮, 黄宝龙, 蔚振廷, 等. 岩巷掘进准直眼掏槽爆破模型试验研究 [J]. 岩石力学与工程学报, 2012, 31(2): 256–264. doi: 10.3969/j.issn.1000-6915.2012.02.004

    SHAN R L, HUANG B L, WEI Z T, et al. Model test of quasi-parallel cut blasting in rock drivage [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 256–264. doi: 10.3969/j.issn.1000-6915.2012.02.004
    [10] SHAPIRO V Y. Efficiency of cut configuration in driving tunnels with a set of deep blast holes [J]. Soviet Mining Science, 1989, 25(4): 379–386. doi: 10.1007/BF02528560
    [11] 龚敏, 文斌, 王华. 掏槽参数对煤矿岩巷爆破效果的影响 [J]. 爆炸与冲击, 2015, 35(4): 576–584. doi: 10.11883/1001-1455(2015)04-0576-09

    GONG M, WEN B, WANG H. Influences of cut parameters on blasting effect in rock roadway of coal mine [J]. Explosion and Shock Waves, 2015, 35(4): 576–584. doi: 10.11883/1001-1455(2015)04-0576-09
    [12] 龚敏, 王灿华, 梁立勋, 等. 硬岩掘进中主要爆破参数的确定与作用 [J]. 煤炭学报, 2015, 40(7): 1526–1533. doi: 10.13225/j.cnki.jccs.2014.1766

    GONG M, WANG C H, LIANG L X, et al. Function analysis and confirming method of key blasting parameters for excavating in hard rock [J]. Journal of China Coal Society, 2015, 40(7): 1526–1533. doi: 10.13225/j.cnki.jccs.2014.1766
    [13] 傅洪贤, 沈周, 赵勇, 等. 隧道电子雷管爆破降振技术试验研究 [J]. 岩石力学与工程学报, 2012, 31(3): 597–603. doi: 10.3969/j.issn.1000-6915.2012.03.018

    FU H X, SHEN Z, ZHAO Y, et al. Experimental study of decreasing vibration technology of tunnel blasting with digital detonator [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 597–603. doi: 10.3969/j.issn.1000-6915.2012.03.018
    [14] 李清, 于强, 张迪, 等. 地铁隧道精确控制爆破延期时间优选及应用 [J]. 振动与冲击, 2018, 37(13): 135–140, 170. doi: 10.13465/j.cnki.jvs.2018.13.021

    LI Q, YU Q, ZHANG D, et al. Metro tunnel precisely controlled blasting’s delay time optimization and its application [J]. Journal of Vibration and Shock, 2018, 37(13): 135–140, 170. doi: 10.13465/j.cnki.jvs.2018.13.021
    [15] 孔祥松, 刘响钟, 周纪军, 等. 岩石工程爆破破碎的机理研究 [J]. 矿业研究与开发, 2013, 33(4): 118–121. doi: 10.13827/j.cnki.kyyk.2013.04.011

    KONG X S, LIU X Z, ZHOU J J, et al. Study on fragmentation mechanism for rock blasting engineering [J]. Mining Research and Development, 2013, 33(4): 118–121. doi: 10.13827/j.cnki.kyyk.2013.04.011
    [16] 马芹永, 袁璞, 张经双, 等. 立井直眼微差爆破模型试验振动测试与分析 [J]. 振动与冲击, 2015, 34(6): 172–176. doi: 10.13465/j.cnki.jvs.2015.06.033

    MA Q Y, YUAN P, ZHANG J S, et al. Blasting vibration measurement and analyses of millisecond blasting models for vertical shaft blasting [J]. Journal of Vibration and Shock, 2015, 34(6): 172–176. doi: 10.13465/j.cnki.jvs.2015.06.033
    [17] 李鹏, 吕良哲, 陈智山, 等. 隧道爆破中合理微差时间的选择 [J]. 采矿技术, 2011, 11(5): 127–128. doi: 10.3969/j.issn.1671-2900.2011.05.048

    LI P, LYU L Z, CHEN Z S, et al. Selection of reasonable millisecond time in tunnel blasting [J]. Mining Technology, 2011, 11(5): 127–128. doi: 10.3969/j.issn.1671-2900.2011.05.048
    [18] 戴俊. 爆破工程 [M]. 2版. 北京: 机械工业出版社, 2015.

    DAI J. Blasting engineering [M]. 2nd ed. Beijing: China Machine Press, 2015.
    [19] 周传波. 深孔爆破一次成井模拟优化与应用研究 [D]. 武汉: 中国地质大学, 2004.

    ZHOU C B. Study on simulation optimization and application of shaft formation by one deep-hole blasting [D]. Wuhan: China University of Geosciences, 2004.
    [20] 宗琦, 傅菊根, 徐华生. 立井冻土掘进爆破技术的研究与应用 [J]. 岩土力学, 2007, 28(9): 1992–1996. doi: 10.3969/j.issn.1000-7598.2007.09.043

    ZONG Q, FU J G, XU H S. Study and application of frozen soil blasting technique in shaft [J]. Rock and Soil Mechanics, 2007, 28(9): 1992–1996. doi: 10.3969/j.issn.1000-7598.2007.09.043
    [21] 李洪伟, 黄昕旭, 吴立辉, 等. 电子雷管在岩巷爆破中掏槽孔微差时间试验研究及数值模拟 [J]. 金属矿山, 2022(7): 64–72. doi: 10.19614/j.cnki.jsks.202207009

    LI H W, HUANG X X, WU L H, et al. Experimental study and numerical simulation on micro-difference time of cutting hole of electronic detonator in rock roadway blasting [J]. Metal Mine, 2022(7): 64–72. doi: 10.19614/j.cnki.jsks.202207009
    [22] 唐建华, 宗琦, 马长世. 试析筒形直眼掏槽产生大块的机理 [J]. 煤矿爆破, 1995(4): 21–23.

    TANG J H, ZONG Q, MA C S. Analysis on the mechanism of large block in cylindrical straight eye cutting [J]. Coal Mine Blasting, 1995(4): 21–23.
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  206
  • PDF下载量:  48
出版历程
  • 收稿日期:  2022-08-11
  • 修回日期:  2022-10-15
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-02-05

目录

/

返回文章
返回