基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则

毛致远 段超伟 宋浦 胡宏伟 郑监

毛致远, 段超伟, 宋浦, 胡宏伟, 郑监. 基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则[J]. 高压物理学报, 2023, 37(2): 025103. doi: 10.11858/gywlxb.20220625
引用本文: 毛致远, 段超伟, 宋浦, 胡宏伟, 郑监. 基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则[J]. 高压物理学报, 2023, 37(2): 025103. doi: 10.11858/gywlxb.20220625
MAO Zhiyuan, DUAN Chaowei, SONG Pu, HU Hongwei, ZHENG Jian. Criterion of Plate Structure Damage Caused by Underwater Explosion Shock Wave Based on Effective Impulse[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025103. doi: 10.11858/gywlxb.20220625
Citation: MAO Zhiyuan, DUAN Chaowei, SONG Pu, HU Hongwei, ZHENG Jian. Criterion of Plate Structure Damage Caused by Underwater Explosion Shock Wave Based on Effective Impulse[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025103. doi: 10.11858/gywlxb.20220625

基于有效冲量的水下爆炸冲击波对平板结构的毁伤准则

doi: 10.11858/gywlxb.20220625
详细信息
    作者简介:

    毛致远(1998-),男,硕士研究生,主要从事水下爆炸技术研究. E-mail:944729131@qq.com

    通讯作者:

    宋 浦(1973-),男,博士,研究员,主要从事爆炸力学研究. E-mail:songpu73@163.com

  • 中图分类号: O389; TJ55

Criterion of Plate Structure Damage Caused by Underwater Explosion Shock Wave Based on Effective Impulse

  • 摘要: 为了准确评估水下爆炸冲击波对平板结构造成的毁伤效果,提出以有效冲量作为毁伤准则的威力参量类别,并给出了考虑球面波斜入射效应的平板结构有效冲量计算方法。新准则通过动量守恒方程计算得到的平板结构实际获得冲量对比毁伤效果,表现为冲击波峰压、时间常数以及板结构特征参数的联合形式。借助数值模拟与文献数据,对比分析了准则的准确度和适用性。结果表明:相对于冲击波峰压、比冲量、能流密度等单一威力参量,新毁伤准则在评估平板结构的毁伤程度时误差更小;在对比不同炸药毁伤威力以及预估未知工况毁伤效果两种应用场景中,新准则的相对误差均在10%以内。新提出的毁伤准则用于对比和评估水下爆炸冲击波对板结构的毁伤效果时具有良好的通用性。

     

  • 图  冲击波斜入射示意图

    Figure  1.  Schematic diagram of obliqueincidence of shock wave

    图  有限元仿真模型

    Figure  2.  Finite element simulation model

    图  一维冲击波计算模型

    Figure  3.  One dimensional shock wave calculation model

    图  平板结构变形的数值模拟结果

    Figure  4.  Numerical simulation results of target plate deformation

    图  空化区域随时间的变化

    Figure  5.  Variation of cavitation area with time

    图  不同准则与结构变形挠度的对应关系

    Figure  6.  Corresponding relations between different criteria and deflection

    图  回归拟合的均方误差

    Figure  7.  Mean square error of regression fitting

    图  斜入射修正前、后线性相关性对比

    Figure  8.  Comparison of linear correlation before and after oblique incidence correction

    表  1  数值模拟计算材料模型

    Table  1.   Material model in numerical simulation

    MaterialEOSStrength modelFailure model
    TNT-2JWL
    AirIdeal gas
    WaterShockHydro
    Q235 steelLinearJohnson-CookJohnson-Cook
    下载: 导出CSV

    表  2  冲击波冲量与时间常数数值模拟结果验证

    Table  2.   Verification of simulation results of shock wave impulse and time constant

    Standoff
    distance/m
    W/gTime decay constants Impulse
    Numerical
    simulation/ms
    Empirical
    formula/ms
    Relative
    error/%
    Numerical
    simulation/(kPa·s)
    Empirical
    formula/(kPa·s)
    Relative
    error/%
    0.4500.03000.0315−4.87 1.9761.9690.35
    0.5500.03190.0332−4.061.6071.614−0.45
    0.6500.03490.03460.911.3691.372−0.26
    下载: 导出CSV

    表  3  冲击波作用下圆板的变形挠度

    Table  3.   Deflection of circular plate under shock wave

    D$\omega $/mm
    W=50 gW=100 gW=200 gW=400 gW=800 g
    1059.5271.9885.3299.22113.90
    1640.8547.5354.8562.8471.83
    2032.4637.7343.4049.9257.24
    2624.2428.1332.7737.8243.60
    3020.2923.7527.8632.3937.54
    下载: 导出CSV

    表  4  炸药的相关系数 α, $k $

    Table  4.   Coefficients α, $k $ for explosives

    Explosive type${\alpha {_p}}$${k{_p}}$${\alpha {_\theta }}$${k{_\theta }}$
    TNT1.1352.4−0.230.084
    H-61.1959.2−0.280.088
    Pentolite1.1456.5−0.230.084
    下载: 导出CSV

    表  5  不同工况下结构变形挠度计算误差对比

    Table  5.   Comparison of calculation errors of deflection under different working conditions

    CI,plateExplosiveW/gStandoff distance/m$\omega $/mmRelative error of the same explosive/%Relative error with TNT/%
    1.0TNT2000.7493.533.68
    TNT4001.0393.663.68
    H-62000.8493.613.05−1.95
    H-64001.1663.723.05−1.95
    Pentolite2000.8063.343.295.56
    Pentolite4001.1143.453.295.56
    1.6TNT2000.4526.000.67
    TNT4000.6476.040.67
    H-62000.5306.16−1.79−1.14
    H-64000.7456.05−1.79−1.14
    Pentolite2000.4935.91−2.713.16
    Pentolite4000.6995.75−2.713.16
    下载: 导出CSV

    表  6  3种工况下的结构变形挠度

    Table  6.   Deflections under three working conditions

    Standoff distance/m$\omega $/mmW/kg
    2.13149.681
    1.70590.861
    1.421120.301
    下载: 导出CSV

    表  7  平板结构变形挠度预测值与实验结果的对比

    Table  7.   Comparison between predicted and experimental values of deflection

    W/kgStandoff distance/m$\omega $/mmPredicted deflection/mmPrediction error/%
    11.136149.94160.266.88
    10.710243.81222.24−8.85
    下载: 导出CSV
  • [1] KEIL A H. The response of ships to underwater explosions [R]. New York: Society of Naval Architects and Marine Engineers, 1961: 43.
    [2] REID W D. The response of surface ships to underwater explosions [R]. Canberra, Australia: Defence Science and Technology Organization, 1996.
    [3] 任鹏, 田阿利, 张伟, 等. 水下冲击波载荷作用下气背固支圆板动态毁伤实验 [J]. 爆炸与冲击, 2016, 36(5): 617–624. doi: 10.11883/1001-1455(2016)05-0617-08

    REN P, TIAN A L, ZHANG W, et al. Failure mode of clamped air-back circular panel subjected to underwater shock loading [J]. Explosion and Shock Waves, 2016, 36(5): 617–624. doi: 10.11883/1001-1455(2016)05-0617-08
    [4] 冯晓伟, 卢永刚, 李永泽. 飞机目标在爆炸冲击波作用下的毁伤效应评估方法 [J]. 高压物理学报, 2019, 33(4): 045101. doi: 10.11858/gywlxb.20180687

    FENG X W, LU Y G, LI Y Z. Damage assessment method of aircraft targets under blast wave [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045101. doi: 10.11858/gywlxb.20180687
    [5] 王树山, 张静骁, 王传昊, 等. 水中爆炸冲击波对靶体结构的毁伤准则研究 [J]. 火炸药学报, 2020, 43(3): 262–270. doi: 10.14077/j.issn.1007-7812.201909015

    WANG S S, ZHANG J X, WANG C H, et al. Damage criterion of underwater explosion shock wave on target [J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 262–270. doi: 10.14077/j.issn.1007-7812.201909015
    [6] 胡宏伟, 宋浦, 王建灵, 等. 炸药水中爆炸冲击因子的新型计算方法 [J]. 爆炸与冲击, 2014, 34(1): 11–16. doi: 10.11883/1001-1455(2014)01-0011-06

    HU H W, SONG P, WANG J L, et al. A new calculation method for shock factor of underwater explosion [J]. Explosion and Shock Waves, 2014, 34(1): 11–16. doi: 10.11883/1001-1455(2014)01-0011-06
    [7] 卢熹, 王树山, 王新颖. 水中爆炸对鱼雷壳体的毁伤准则和判据研究 [J]. 兵工学报, 2016, 37(8): 1469–1475. doi: 10.3969/j.issn.1000-1093.2016.08.019

    LU X, WANG S S, WANG X Y. Research on damage criterion of torpedo shell subjected to underwater explosive shock waves [J]. Acta Armamentarii, 2016, 37(8): 1469–1475. doi: 10.3969/j.issn.1000-1093.2016.08.019
    [8] 薛再清, 辛春亮, 梁海东, 等. 水下爆炸冲击波及其作用判据研究 [J]. 防护工程, 2016, 38(3): 48–52.

    XUE Z Q, XIN C L, LIANG H D, et al. Study on shock-wave of underwater explosion and effect criterion [J]. Protective Engineering, 2016, 38(3): 48–52.
    [9] ZHANG W Z, JIANG W K. An improved shock factor to evaluate the shock environment of small-sized structures subjected to underwater explosion [J]. Shock and Vibration, 2015, 2015: 451583. doi: 10.1155/2015/451583
    [10] 姚熊亮, 曹宇, 郭君, 等. 一种用于水面舰船的水下爆炸冲击因子 [J]. 哈尔滨工程大学学报, 2007, 28(5): 501–509. doi: 10.3969/j.issn.1006-7043.2007.05.004

    YAO X L, CAO Y, GUO J, et al. Research on the response of warships to impulsive factor of underwater explosions [J]. Journal of Harbin Engineering University, 2007, 28(5): 501–509. doi: 10.3969/j.issn.1006-7043.2007.05.004
    [11] 罗泽立, 周章涛, 毛海斌, 等. 水下爆炸强冲击波与平板结构相互作用的理论分析方法 [J]. 高压物理学报, 2017, 31(4): 443–452. doi: 10.11858/gywlxb.2017.04.013

    LUO Z L, ZHOU Z T, MAO H B, et al. Theoretical analysis of the interaction between the plate structure and strong shock wave in underwater explosion [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 443–452. doi: 10.11858/gywlxb.2017.04.013
    [12] 王树山. 终点效应学 [M]. 2版. 北京: 科学出版社, 2019: 33−34.

    WANG S S. Terminal effects [M]. 2nd ed. Beijing: Science Press, 2019: 33−34.
    [13] TAYLOR G I. The pressure and impulse of submarine explosion waves on plates [C]//The Scientific Papers Sir Geoffrey Ingram Taylor. Cambridge: Cambridge University Press, 1963: 287−303.
    [14] 李旭东, 尹建平, 杜志鹏, 等. 多次水下爆炸钢制圆板应变与挠度增长规律分析 [J]. 振动与冲击, 2020, 39(5): 131–136. doi: 10.13465/j.cnki.jvs.2020.05.017

    LI X D, YIN J P, DU Z P, et al. Growth law analysis for strain and deflection of steel circular plates subjected to multiple underwater explosions [J]. Journal of Vibration and Shock, 2020, 39(5): 131–136. doi: 10.13465/j.cnki.jvs.2020.05.017
    [15] 张斐, 张春辉, 张磊, 等. 多次水下爆炸作用下钢板动态响应数值模拟 [J]. 中国舰船研究, 2019, 14(6): 122–129. doi: 10.19693/j.issn.1673-3185.01431

    ZHANG F, ZHANG C H, ZHANG L, et al. Numerical simulation of dynamic response of steel plate subjected to multiple underwater explosions [J]. Chinese Journal of Ship Research, 2019, 14(6): 122–129. doi: 10.19693/j.issn.1673-3185.01431
    [16] COLE R H. Underwater explosions [M]. New Jersey: Princeton University Press, 1948.
    [17] 张显丕, 刘建湖, 潘建强, 等. 基于效应靶的装药水下近场爆炸威力评估方法 [J]. 兵工学报, 2016, 37(8): 1430–1435. doi: 10.3969/j.issn.1000-1093.2016.08.013

    ZHANG X P, LIU J H, PAN J Q, et al. An evaluation method for near-field underwater explosion power based on effect target [J]. Acta Armamentarii, 2016, 37(8): 1430–1435. doi: 10.3969/j.issn.1000-1093.2016.08.013
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  108
  • PDF下载量:  54
出版历程
  • 收稿日期:  2022-07-08
  • 修回日期:  2022-08-25
  • 录用日期:  2022-08-27
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回