约束对陶瓷/钢复合靶板抗侵彻性能的影响

夏习持 李永清 侯海量 李典

夏习持, 李永清, 侯海量, 李典. 约束对陶瓷/钢复合靶板抗侵彻性能的影响[J]. 高压物理学报, 2023, 37(2): 025104. doi: 10.11858/gywlxb.20220624
引用本文: 夏习持, 李永清, 侯海量, 李典. 约束对陶瓷/钢复合靶板抗侵彻性能的影响[J]. 高压物理学报, 2023, 37(2): 025104. doi: 10.11858/gywlxb.20220624
XIA Xichi, LI Yongqing, HOU Hailiang, LI Dian. Effect of Constraints on the Penetration Resistance of Ceramic/Steel Composite Target Plate[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025104. doi: 10.11858/gywlxb.20220624
Citation: XIA Xichi, LI Yongqing, HOU Hailiang, LI Dian. Effect of Constraints on the Penetration Resistance of Ceramic/Steel Composite Target Plate[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025104. doi: 10.11858/gywlxb.20220624

约束对陶瓷/钢复合靶板抗侵彻性能的影响

doi: 10.11858/gywlxb.20220624
基金项目: 国家自然科学基金(52101378)
详细信息
    作者简介:

    夏习持(1998-),男,硕士研究生,主要从事舰船毁伤与防护研究. E-mail:xxc10101012@163.com

    通讯作者:

    李 典(1990-),男,博士,讲师,主要从事舰船抗爆抗冲击研究. E-mail:lidian916@163.com

  • 中图分类号: O347.3

Effect of Constraints on the Penetration Resistance of Ceramic/Steel Composite Target Plate

  • 摘要: 为探究施加约束对陶瓷破碎位移规律和陶瓷复合装甲抗侵彻性能的影响,采用光滑粒子流体动力学-有限元法(SPH-FEM)对柱状弹侵彻陶瓷/钢复合靶板进行了数值模拟,根据陶瓷复合装甲的破坏响应特性和弹体运动、受力变化,对侵彻过程进行了阶段划分,并在此基础上分析了自约束、侧向约束、面板约束3种约束方式对陶瓷破碎位移的影响,并对靶板防护性能进行了改进。结果表明:通过施加约束限制陶瓷锥的位移是充分发挥陶瓷复合装甲防护能力的关键,施加3种约束方式均能够减小破碎陶瓷的横向位移或纵向位移,从而在一定范围内有效提升陶瓷复合靶板的抗侵彻能力。

     

  • 图  靶板有限元计算模型

    Figure  1.  Finite element model of target plate

    图  现有实验的靶板及模型

    Figure  2.  Target plate and model of existing experiment

    图  带有侧向约束的靶板构型[15]

    Figure  3.  Structure of target plate with circumferential constraint[15]

    图  1号实验靶板及弹体破坏形貌的实验和数值模拟对比

    Figure  4.  Comparison of damage morphologies of target plate and projectile between experiment and numerical simulation in No.1

    图  4~6号实验靶板及弹体破坏形貌的实验和数值模拟对比

    Figure  5.  Comparison of damage morphologies of target plate and projectile between experiment and numerical simulation in No.4–6

    图  无约束陶瓷复合靶板模型

    Figure  6.  Model of unconstrained ceramic composite target

    图  弹体速度和受力时程曲线

    Figure  7.  Time history curves of velocity and force of bullet

    图  弹体侵彻陶瓷/钢复合靶板的破坏过程

    Figure  8.  Failure process of ceramic composite target impacted by bullet

    图  陶瓷锥形成发展示意图

    Figure  9.  Schematic diagram of ceramic cone development

    图  10  不同约束方式下的靶板模型

    Figure  10.  Models of targets with different constraints

    图  11  陶瓷自约束效应示意图

    Figure  11.  Schematic diagram of ceramic intrinsic constraint

    图  12  弹体受力随陶瓷直径变化的时程曲线

    Figure  12.  Time history curves of force on bullet with different diameters of ceramics

    图  13  设置观测点

    Figure  13.  Observation point setting

    图  14  观测点的速度和位移时程曲线

    Figure  14.  Time history curves of velocity and displacement of observation points

    图  15  陶瓷面板速度云图

    Figure  15.  Velocity distribution of ceramic plate

    图  16  观测点位移随陶瓷直径变化的时程曲线

    Figure  16.  Time history curves of displacement of observation point with different diameters of ceramics

    图  17  弹体剩余速度和单位面密度吸能随陶瓷直径的变化

    Figure  17.  Residual velocity-diameter curve and energy absorption-diameter curve

    图  18  弹体受力随侧向约束厚度变化时程曲线

    Figure  18.  Time history curves of force on bullet with different thickness of circumferential constraints

    图  21  t=27 μs时侧向约束靶板的变形破坏

    Figure  21.  Damage of circumferential constrained target at t=27 μs

    图  19  t=8 μs时有/无侧向约束陶瓷损伤对比

    Figure  19.  Comparison of ceramic damage with/without circumferential constraint at t=8 μs

    图  20  不同侧向约束厚度下观测点的位移时程曲线

    Figure  20.  Time history curves of displacement of observation point with different thicknesses of circumferential constraints

    图  22  弹体剩余速度及单位面密度吸能随钢圈厚度的变化曲线

    Figure  22.  Residual velocity-thickness curve and energy absorption-thickness curve of bullet

    图  23  放置面板的靶板计算模型

    Figure  23.  Finite element model of ceramic target with panel

    图  24  有/无面约束时陶瓷的损伤对比

    Figure  24.  Comparison of ceramic damage with/without surface confinement

    图  25  t=27 μs时施加面约束下靶板的破坏形貌

    Figure  25.  Damage of ceramic target with surfaceconfinement at t=27 μs

    图  26  不同靶面约束下弹体的剩余速度和剩余动能对比

    Figure  26.  Comparison of residual velocity and kinetic energy of bullet under different surface constraints of target

    图  27  弹体剩余速度随面板厚度变化曲线

    Figure  27.  Curve of residual velocity ofbullet with panel thickness

    图  28  观测点位移随面板厚度变化的时程曲线

    Figure  28.  Time history curves of displacement of observation point with different thicknesses of panel

    图  29  对陶瓷施加不同约束后弹体的剩余速度变化曲线

    Figure  29.  Curves of bullet residual velocity after applying different constraints on ceramics

    表  1  45钢和Q235钢的相关材料参数[1617]

    Table  1.   Mechanical parameters of 45 steel and Q235 steel[1617]

    Materialρ/(kg·m−3)E/GPaνσ0/MPaEt/MPaC/s−1P
    45 steel78502100.333552540.45
    Q235 steel78002100.323525040.45
    下载: 导出CSV

    表  2  T12A钢、6061铝合金和304钢的相关材料参数

    Table  2.   Mechanical parameters of T12A steel,6061 Al alloy and 304 steel

    Materialρ/(kg·m−3)G/GPacp/(J·kg−1·K−1)A/MPaB/MPamnC1
    T12A steel783077.047713005100.940.260.014
    6061 Al alloy270027.68852901251.000.340.100
    304 steel790077.04233407301.030.350.014
    下载: 导出CSV

    表  3  陶瓷材料的相关参数[16, 19]

    Table  3.   Mechanical parameters of ceramics[16, 19]

    Materialρ/(kg·m−3)G/GPa T/GPaA1B1C1MN$S{_{\rm{F} }^{\rm{max} } }$/GPa
    SiC3163183 0.370.960.3501.000.650.8
    Al2O33700 90 0.200.930.3100.600.601.3
    MaterialσHEL/GPapHEL/GPaTHEL/GPaK1/GPaK2/GPaK3/GPaD1D2
    SiC14.5675.9013.0204.785000.4800.48
    Al2O3 2.7901.46 2.0130.950000.0051.00
    下载: 导出CSV

    表  4  实验与数值模拟结果对比

    Table  4.   Comparison of numerical simulation and test results

    No.v0/(m·s−1)vr K/σ
    Test/(m·s−1)SPH-FEM/(m·s−1) Error/% Test/(J·m2·kg−1)SPH-FEM/(J·m2·kg−1) Error/%
    1995.1483.5445 −8.0 119.8125.5 4.7
    2986.3468.6417 −8.9119.3125.24.9
    3962.5455.0448 −1.5113.9115.08.7
    No. v0/(m·s−1)ConditionStructure formDOP
    Test/mmSPH-FEM/mm Error/%
    4 758Blank70 mm Al alloy26.9226.11−3.0
    5 764Unconfined10 mm Al2O3 ceramics+30 mm Al alloy 8.37 8.54 1.6
    6 756Laterally confined10 mm Al2O3 ceramics+30 mm Al alloy 6.83 6.51−5.4
    下载: 导出CSV
  • [1] 姚国文, 刘占芳, 詹先义. 极端冲击条件下脆性破坏的物理机制 [J]. 重庆大学学报(自然科学版), 2000, 23(4): 154–158. doi: 10.3969/j.issn.1000-582X.2000.04.037

    YAO G W, LIU Z F, ZHAN X Y. Physical mechanism of brittle material failure under critical shock conditions [J]. Journal of Chongqing University (Natural Science), 2000, 23(4): 154–158. doi: 10.3969/j.issn.1000-582X.2000.04.037
    [2] 李超, 刘建超. 复合材料装甲技术的发展及应用 [J]. 化工新型材料, 2004, 32(6): 46–48, 53. doi: 10.3969/j.issn.1006-3536.2004.06.015

    LI C, LIU J C. Development and application of advanced composite armor technology [J]. New Chemical Materials, 2004, 32(6): 46–48, 53. doi: 10.3969/j.issn.1006-3536.2004.06.015
    [3] WOODWARD R L. A simple one-dimensional approach to modelling ceramic composite armour defeat [J]. International Journal of Impact Engineering, 1990, 9(4): 455–474. doi: 10.1016/0734-743X(90)90035-T
    [4] HOGAN J D, FARBANIEC L, MALLICK D, et al. Fragmentation of an advanced ceramic under ballistic impact: mechanisms and microstructure [J]. International Journal of Impact Engineering, 2017, 102: 47–54. doi: 10.1016/j.ijimpeng.2016.12.008
    [5] 余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究 [J]. 爆炸与冲击, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134

    YU Y L, JIANG Z X, WANG X D, et al. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration [J]. Explosion and Shock Waves, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134
    [6] SHERMAN D, BEN-SHUSHAN T. Quasi-static impact damage in confined ceramic tiles [J]. International Journal of Impact Engineering, 1998, 21(4): 245−265.
    [7] FRANZEN R R, ORPHAL D L, ANDERSON C E. The influence of experimental design on depth-of-penetration (DOP) test results and derived ballistic efficiencies [J]. International Journal of Impact Engineering, 1997, 19(8): 727–737. doi: 10.1016/S0734-743X(97)00010-9
    [8] WESTERLING L, LUNDBERG T. The influence of confinement on the protective capability of ceramic armour at two different velocities [C]//15th International Symposium on Ballistics. 1995: 283−290.
    [9] 李平. 陶瓷材料的动态力学响应及其抗长杆弹侵彻机理 [D]. 北京: 北京理工大学, 2002: 45−49.

    LI P. Dynamic mechanical response of ceramic materials and its resistance to long rod penetration [D]. Beijing: Beijing Institute of Technology, 2002: 45−49.
    [10] TIAN C, SUN Q T, AN X Y, et al. Influences of ceramic constraint on protection performances of ceramic-metal hybrid structures under impact loads [J]. International Journal of Mechanical Sciences, 2019, 159: 81–90. doi: 10.1016/j.ijmecsci.2019.05.042
    [11] TIAN C, AN X Y, SUN Q T, et al. Experimental and numerical analyses of the penetration resistance of ceramic-metal hybrid structures [J]. Composite Structures, 2019, 211: 264–272. doi: 10.1016/j.compstruct.2018.12.021
    [12] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. doi: 10.6052/0459-1879-13-092

    HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Theoretical and Applied Mechanics, 2013, 45(5): 639–652. doi: 10.6052/0459-1879-13-092
    [13] SWEGLE J W, HICKS D L, ATTAWAY S W. Smoothed particle hydrodynamics stability analysis [J]. Journal of Computational Physics, 1995, 116(1): 123–134. doi: 10.1006/jcph.1995.1010
    [14] FERNÁNDEZ-MÉNDEZ S, BONET J, HUERTA A. Continuous blending of SPH with finite elements [J]. Computers & Structures, 2005, 83(17/18): 1448–1458.
    [15] 曹凌宇, 罗兴柏, 刘国庆, 等. 侧向约束陶瓷抗侵彻性能试验研究 [J]. 装甲兵工程学院学报, 2018, 32(5): 76–80. doi: 10.3969/j.issn.1672-1497.2018.05.014

    CAO L Y, LUO X B, LIU G Q, et al. Experimental study on the anti-penetration performance of lateral confinement ceramics [J]. Journal of Armored Corps Engineering College, 2018, 32(5): 76–80. doi: 10.3969/j.issn.1672-1497.2018.05.014
    [16] 南宇翔, 蒋建伟, 王树有, 等. 子弹药落地冲击响应数值模拟及实验验证 [J]. 振动与冲击, 2013, 32(3): 182–187. doi: 10.3969/j.issn.1000-3835.2013.03.036

    NAN Y X, JIANG J W, WANG S Y, et al. Numerical simulation and test for impact response of submunitions drop [J]. Journal of Vibration and Shock, 2013, 32(3): 182–187. doi: 10.3969/j.issn.1000-3835.2013.03.036
    [17] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下双层防爆舱壁结构抗爆性能仿真分析 [J]. 海军工程大学学报, 2012, 24(3): 26–33. doi: 10.3969/j.issn.1009-3486.2012.03.006

    CHEN C H, ZHU X, HOU H L, et al. Numerical analysis of blast resistance of double-layer bulkhead structures subjected to close-range air blast [J]. Journal of Naval University of Engineering, 2012, 24(3): 26–33. doi: 10.3969/j.issn.1009-3486.2012.03.006
    [18] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25(3): 211–231. doi: 10.1016/S0734-743X(00)00046-4
    [19] CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA [C]//The 4th European LS-DYNA Users Conference. 2003, 1: 47−60.
    [20] 侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究 [J]. 兵工学报, 2013, 34(1): 105–114. doi: 10.3969/j.issn.1000-1093.2013.01.019

    HOU H L, ZHU X, LI W. Investigation on bullet proof mechanism of light ceramic/steel composite armor [J]. Acta Armamentarii, 2013, 34(1): 105–114. doi: 10.3969/j.issn.1000-1093.2013.01.019
    [21] WILKINS M L. Use of boron compounds in lightweight armor [M]//MATKOVICH V I. Boron and refractory borides. Berlin: Springer, 1977: 633−648.
  • 加载中
图(29) / 表(4)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  96
  • PDF下载量:  40
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-08-31
  • 录用日期:  2022-09-01
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回