Ultimate Support Force of Excavation Face of Super-Large Rectangular Shield Tunnel Crossing High-Speed Railway in Composite Stratum
-
摘要: 为了保证超大矩形盾构隧道开挖面的稳定性,依托某超大矩形盾构隧道工程,采用理论分析、数值模拟和现场监测方法对复合地层下穿高铁超大矩形盾构隧道开挖面的极限支护力进行了研究,提出了复合地层下穿高铁超大矩形盾构隧道开挖面临界破坏模式,并基于极限平衡理论推导了极限支护力计算方法。数值模拟和现场监测结果表明:提出的极限支护力计算方法与数值模拟和现场监测的误差分别在10.40%~18.30%和11.19%~16.85%区间,说明极限支护力公式安全可靠,可应用至实际工程中。研究结果可为类似工程开挖面稳定性控制提供参考。Abstract: To ensure the face stability of the super-large rectangular shield tunnel, based on a super-large rectangular shield tunnel, the theoretical analysis, numerical simulation and field monitoring are used to study the ultimate support force of the super-large rectangular shield tunnel crossing the high-speed railway in the composite stratum. The critical failure mode of excavation surface of super-large rectangular shield tunnel crossing high-speed railway in a composite stratum is proposed, and the calculation method of ultimate support force is deduced based on the ultimate equilibrium theory. The results of numerical simulation and field monitoring show that the errors between the proposed ultimate support force calculation method and numerical simulation as well as the proposed ultimate support force calculation method and field monitoring are 10.40%–18.30% and 11.19%–16.85%, respectively. The formula of ultimate support force is safe and reliable, and can be applied to practical engineering. The research conclusion can provide a reference for the stability control of excavation face in similar projects.
-
表 1 计算参数
Table 1. Calculation parameters
Surrounding rock Density/(kg·m−3) Elastic modulus/GPa Poisson’s ratio Internal friction angle/(°) Cohesion/MPa Weak rock 1 860 0.21 0.37 18 0.000 5 Hard rock 2 500 6 0.25 35 1 Tracks 7 800 206 0.23 Ballast 2 500 0.13 0.35 Sleeper 2 450 31.5 0.20 Foundation 2 300 28.0 0.33 表 2 计算结果对比
Table 2. Comparative analysis of the result
ψ Ultimate support force of excavation face Numerical simulation/MPa Theoretical calculation/MPa Error/% 0 0.59 0.68 15.25 0.25 2.98 3.29 10.40 0.50 5.15 5.71 10.87 0.75 6.48 7.30 12.65 1.00 7.25 8.58 18.30 表 3 土层参数
Table 3. Soil parameters
Surrounding rock Density/(kg·m−3) Cohesion/MPa Internal friction angle/(°) Weak rock 1 800–2 460 0.000 5–0.80 15–23 Hard rock 2 500–2 950 1.0–1.5 20–45 表 4 计算结果对比
Table 4. Comparative analysis of the result
Monitoring sections ψ Ultimate support force Field test/MPa Theoretical calculation/MPa Error/% K0+710 0 5.52–6.29 6.36 15.22 K0+670 0.25 3.56–4.03 4.16 16.85 K0+630 0.50 5.43–6.09 6.15 13.26 K0+590 0.75 6.79–7.35 7.55 11.19 K0+655 1.00 7.36–8.06 8.68 17.93 -
[1] 田四明, 王伟, 杨昌宇, 等. 中国铁路隧道40年发展与展望 [J]. 隧道建设, 2021, 41(11): 1903–1930.TIAN S M, WANG W, YANG C Y, et al. Development and prospect of railway tunnels in China in recent 40 years [J]. Tunnel Construction, 2021, 41(11): 1903–1930. [2] SENENT S, JIMENEZ R. A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse [J]. Tunnelling and Underground Space Technology, 2015, 47: 182–192. doi: 10.1016/j.tust.2014.12.014 [3] ZHANG C P, HAN K H, ZHANG D L. Face stability analysis of shallow circular tunnels in cohesive-frictional soils [J]. Tunnelling and Underground Space Technology, 2015, 50: 345–357. doi: 10.1016/j.tust.2015.08.007 [4] 安永林, 李佳豪, 曹前, 等. 上软下硬地层隧道掌子面稳定性及塌方形态 [J]. 中国铁道科学, 2019, 40(1): 79–87.AN Y L, LI J H, CAO Q, et al. Tunnel face stability and collapse shape in upper-soft and lower-hard strata [J]. China Railway Science, 2019, 40(1): 79–87. [5] 王林, 韩凯航, 郭彩霞, 等. 考虑局部失稳的盾构隧道开挖面挤出破坏数值模拟与理论分析 [J]. 土木工程学报, 2020, 53(Suppl 1): 50–56.WANG L, HAN K H, GUO C X, et al. Numerical simulation and theoretical analysis of passive failure mechanism of shield tunnel face considering partial instability [J]. China Civil Engineering Journal, 2020, 53(Suppl 1): 50–56. [6] 傅鹤林, 邓皇适, 黄震, 等. 下穿砂土地层掌子面盾构推力大小的极限分析 [J]. 铁道工程学报, 2020, 37(5): 80–86. doi: 10.3969/j.issn.1006-2106.2020.05.015FU H L, DENG H S, HUANG Z, et al. Limit analysis of the thrust of the shield on the face passing underneath the sand layer [J]. Journal of Railway Engineering Society, 2020, 37(5): 80–86. doi: 10.3969/j.issn.1006-2106.2020.05.015 [7] 杨子汉, 杨小礼, 张佳华, 等. 不同饱和度下破碎软岩隧道掌子面破坏范围上限分析 [J]. 中南大学学报(自然科学版), 2015, 46(6): 2267–2273.YNAG Z H, YANG X L, ZHANG J H, et al. Upper bound analysis of collapsing area of tunnel face in broken soft rocks under different saturations [J]. Journal of Central South University (Science and Technology), 2015, 46(6): 2267–2273. [8] WONG K S, NG C W W, CHEN Y M, et al. Centrifuge and numerical investigation of passive failure of tunnel face in sand [J]. Tunnelling and Underground Space Technology, 2012, 28: 297–303. doi: 10.1016/j.tust.2011.12.004 [9] 陈峥, 何平, 颜杜民, 等. 超前支护下隧道掌子面稳定性极限上限分析 [J]. 岩土力学, 2019, 40(6): 2154–2162.CHEN Z, HE P, YAN D M, et al. Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154–2162. [10] 邱龑, 杨新安, 黄德中, 等. 穿越分层地层的盾构隧道开挖面稳定机理研究 [J]. 中国铁道科学, 2019, 40(2): 71–80. doi: 10.3969/j.issn.1001-4632.2019.02.10QIU Y, YANG X A, HUANG D Z, et al. Stability mechanism of excavation face of shield tunnel crossing layered strata [J]. China Railway Science, 2019, 40(2): 71–80. doi: 10.3969/j.issn.1001-4632.2019.02.10 [11] 刘克奇, 丁万涛, 陈瑞, 等. 盾构掌子面三维破坏模型构建与极限支护力计算 [J]. 岩土力学, 2020, 41(7): 2293–2303.LIU K Q, DING W T, CHEN R, et al. Construction of three-dimensional failure model of shield tunnel face and calculation of the limit supporting force [J]. Rock and Soil Mechanics, 2020, 41(7): 2293–2303. [12] 崔蓬勃, 朱永全, 刘勇, 等. 考虑土拱发挥过程的非饱和砂土盾构隧道极限支护力计算方法研究 [J]. 岩土工程学报, 2020, 42(5): 873–881.CUI P B, ZHU Y Q, LIU Y, et al. Calculation of ultimate supporting forces of shield tunnels in unsaturated sandy soils considering soil arching effects [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 873–881. [13] 代仲海, 胡再强. 复合地层盾构开挖面极限支护力上限分析 [J]. 工程科学与技术, 2021, 53(2): 95–102.DAI Z H, HU Z Q. Upper bound limit analysis of limit support pressure for shield excavation face in composite ground [J]. Advanced Engineering Sciences, 2021, 53(2): 95–102. [14] 石欣, 赵大军, 宋盛渊, 等. 基于非线性Hoek-Brown破坏准则的裂隙岩体圆形隧道开挖面稳定性分析 [J]. 岩石力学与工程学报, 2020, 39(Suppl 2): 3359–3366.SHI X, ZHAO D J, SONG S Y, et al. Face stability analysis of the circular tunnels in fractured rock masses based on the nonlinear Hoek-Brown failure criterion [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl 2): 3359–3366. [15] ZHANG X, WANG M, LI J, et al. Safety factor analysis of a tunnel face with an unsupported span in cohesive frictional soils [J]. Computers and Geotechnics, 2020: 117.