不同磁性金属丝对氢气爆炸的影响机理研究

胡守涛 洪子金 杨喜港 聂百胜 李如霞 王乐 高建村

胡守涛, 洪子金, 杨喜港, 聂百胜, 李如霞, 王乐, 高建村. 不同磁性金属丝对氢气爆炸的影响机理研究[J]. 高压物理学报, 2023, 37(1): 015201. doi: 10.11858/gywlxb.20220611
引用本文: 胡守涛, 洪子金, 杨喜港, 聂百胜, 李如霞, 王乐, 高建村. 不同磁性金属丝对氢气爆炸的影响机理研究[J]. 高压物理学报, 2023, 37(1): 015201. doi: 10.11858/gywlxb.20220611
HU Shoutao, HONG Zijin, YANG Xigang, NIE Baisheng, LI Ruxia, WANG Le, GAO Jiancun. Influence Mechanism of Different Magnetic Wires on Hydrogen Explosion[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015201. doi: 10.11858/gywlxb.20220611
Citation: HU Shoutao, HONG Zijin, YANG Xigang, NIE Baisheng, LI Ruxia, WANG Le, GAO Jiancun. Influence Mechanism of Different Magnetic Wires on Hydrogen Explosion[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015201. doi: 10.11858/gywlxb.20220611

不同磁性金属丝对氢气爆炸的影响机理研究

doi: 10.11858/gywlxb.20220611
基金项目: 北京市教委科技计划项目(KM201910017001);大学生创新训练项目(2021J00162)
详细信息
    作者简介:

    胡守涛(1986—),男,博士,讲师,主要从事气体爆炸预防与控制技术研究.E-mail:hushoutao@bipt.edu.cn

    通讯作者:

    高建村(1964—),男,博士,教授,主要从事应用化学和安全工程研究.E-mail:gaojiancun@bipt.edu.cn

  • 中图分类号: O389; X932

Influence Mechanism of Different Magnetic Wires on Hydrogen Explosion

  • 摘要: 为探索氢气爆炸防治新技术,开发新型阻隔防爆材料,开展了抗磁性铝丝和铁磁性镍丝对预混氢气-空气爆炸压力影响实验,利用CHEMKIN-PRO软件对氢气爆炸过程中的反应路径和温度敏感性变化进行模拟。实验结果表明,两种金属丝对氢气-空气混合气体爆炸具有双重作用:当混合气体中氢气的体积分数低于20%时,金属丝材料抑制氢气爆炸,且材料填充量越大,抑制作用越强;当混合气体中氢气的体积分数高于25%时,两种金属丝促进氢气爆炸,且填充量越大,促进作用越强。在促进爆炸阶段,镍丝的促进效果弱于铝丝;在抑制爆炸阶段,镍丝的抑爆效果优于铝丝。模拟结果表明,R2对氢气的生成速率影响最大,R1对氢气及爆炸过程中的温度影响最大,影响温度敏感性变化的主要基元反应对爆炸均具有促进作用。通过实验和数值模拟综合分析,揭示了不同磁性金属丝对氢气爆炸的影响机理,可为氢气爆炸防治和开发新型阻隔防爆材料提供理论指导。

     

  • 图  气体爆炸实验装置

    Figure  1.  Gas explosion experimental device

    图  实验管道

    Figure  2.  Experimental pipeline

    图  空白组最大爆炸压力曲线

    Figure  3.  Maximum explosion pressure curve of blank group

    图  铝丝组在不同填充表面积下的最大爆炸压力曲线

    Figure  4.  Maximum explosion pressure curves of aluminum wire group under different filling surface area

    图  镍丝组在不同填充表面积下的最大爆炸压力曲线

    Figure  5.  Maximum explosion pressure curve of nickel wire group under different filling surface area

    图  空白组和材料组的最大爆炸压力对比

    Figure  6.  Comparison of maximum explosion pressure between blank group and material group

    图  氢气爆炸的反应路径

    Figure  7.  Reaction path of hydrogen explosion

    图  氢气爆炸的温度敏感性变化曲线

    Figure  8.  Temperature sensitivity curve of hydrogen explosion

    表  1  实验参数与工况

    Table  1.   Experimental parameters and working conditions

    Exp. No.$\varphi $/%Filling materialFilling surface area/cm2
    115Empty0
    2 15Aluminium2054, 2465, 2876
    3 15Nickel2054, 2465, 2876
    420Empty0
    5 20Aluminium2054, 2465, 2876
    6 20Nickel2054, 2465, 2876
    725Empty0
    8 25Aluminium2054, 2465, 2876
    9 25Nickel2054, 2465, 2876
    下载: 导出CSV

    表  2  不同工况下空白组压力数据

    Table  2.   Pressure data of blank group under different working conditions

    $\varphi $/%pmax/kPaΔt/ms
    15222125
    2033560
    2541929
    下载: 导出CSV

    表  3  不同工况下铝丝组的压力数据

    Table  3.   Pressure data of aluminum wire group under different working conditions

    Filling surface area/cm2$\varphi $/%pmax/kPaΔt/ms
    2054158219.20
    2013618.86
    2512140.81
    2465156022.98
    2011410.38
    2520450.91
    2876
    154519.08
    201108.91
    2525960.27
    下载: 导出CSV

    表  4  不同工况下镍丝组的压力数据

    Table  4.   Pressure data of nickel wire group under different working conditions

    Filling surface area/cm2$\varphi $/%pmax/kPaΔt/ms
    2054156718.39
    201589.21
    2511450.57
    2465155322.70
    2011112.02
    2518280.59
    2876153114.26
    208310.11
    2524380.46
    下载: 导出CSV

    表  5  氢气爆炸过程中的关键基元反应

    Table  5.   Key elementary reactions during hydrogen explosion

    Reaction orderElementary reaction
    R1H+O2=O+OH
    R2O+H2=H+OH
    R3OH+H2=H+H2O
    R9H+OH=H2O
    R10 O+H=OH
    下载: 导出CSV
  • [1] ZHOU S Y, LUO Z M, WANG T, et al. Research progress on the self-ignition of high-pressure hydrogen discharge: a review [J].International Journal of Hydrogen Energy, 2022, 47(15): 9460–9476.
    [2] SHEN X B, XU J Y, WEN J X. Phenomenological characteristics of hydrogen/air premixed flame propagation in closed rectangular channels [J]. Renewable Energy, 2021, 174: 606–615. doi: 10.1016/j.renene.2021.04.056
    [3] CAO W G, LIU Y F, CHEN R K, et al. Pressure release characteristics of premixed hydrogen-air mixtures in an explosion venting device with a duct [J]. International Journal of Hydrogen Energy, 2021, 46(12): 8810–8819. doi: 10.1016/j.ijhydene.2020.12.052
    [4] SAN M C, HECHT E S, EKOTO I W, et al. Overview of the DOE hydrogen safety, codes and standards program, part 3: advances in research and development to enhance the scientific basis for hydrogen regulations, codes and standards [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7263–7274. doi: 10.1016/j.ijhydene.2016.07.014
    [5] ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: review and recommendation [J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072–15086. doi: 10.1016/j.ijhydene.2019.04.068
    [6] 路长, 李毅, 潘荣锟. 管道氢气-空气预混气体爆炸特征的试验研究 [J]. 安全与环境学报, 2016, 16(3): 38–42. doi: 10.13637/j.issn.1009-6094.2016.03.008

    LU C, LI Y, PAN R K. Experimental study on explosion characteristics of hydrogen-air premixed gas in pipelines [J]. Journal of Safety and Environment, 2016, 16(3): 38–42. doi: 10.13637/j.issn.1009-6094.2016.03.008
    [7] TROIANI G. Effect of velocity inflow conditions on the stability of a CH4/air jet-flame [J]. Combustion and Flame, 2009, 156(2): 539–542. doi: 10.1016/j.combustflame.2008.11.020
    [8] NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. doi: 10.1016/j.jlp.2011.08.009
    [9] HOLBORN P G, BATTERSBY P N, INGRAIN J M, et al. Modelling the mitigation of a hydrogen deflagration in a nuclear waste silo ullage with water fog [J]. Process Safety and Environmental Protection, 2013, 91(6): 476–482. doi: 10.1016/j.psep.2012.11.001
    [10] WEN X P, WANG M M, SU T F, et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32332–32342. doi: 10.1016/j.ijhydene.2019.10.110
    [11] DIXON-LEWIS G, MARSHALL P, RUSCIC B, et al. Inhibition of hydrogen oxidation by HBr and Br2 [J]. Combustion and Flame, 2012, 159(2): 528–540. doi: 10.1016/j.combustflame.2011.08.016
    [12] SIKES T, MATHIEU O, KULATILAKA W D, et al. Laminar flame speeds of DEMP, DMMP, and TEP added to H2- and CH4-air mixtures [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3775–3781. doi: 10.1016/j.proci.2018.05.042
    [13] YAN C, LI M S, BI L H, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere [J]. Fuel Processing Technology, 2018, 180: 96–104. doi: 10.1016/j.fuproc.2018.08.015
    [14] WEI H Q, XU Z L, ZHOU L, et al. Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14798–14805. doi: 10.1016/j.ijhydene.2018.06.038
    [15] YANG Z K, ZHAO K, SONG X Z, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture [J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998–35013. doi: 10.1016/j.ijhydene.2021.08.035
    [16] ZHOU S Y, GAO J C, LUO Z M, et al. Effects of mesh aluminium alloy and aluminium velvet on the explosion of H2/air, CH4/air and C2H2/air mixtures [J]. International Journal of Hydrogen Energy, 2021, 46(27): 14871–14880. doi: 10.1016/j.ijhydene.2021.01.200
    [17] PANG L, WANG C, HAN M, et al. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy [J]. Journal of Hazardous Materials, 2015, 299: 174–180. doi: 10.1016/j.jhazmat.2015.06.027
    [18] SONG X Z, ZUO X C, YANG Z K, et al. The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32686–32701. doi: 10.1016/j.ijhydene.2020.08.197
    [19] FARADAY M. LXIV. On the diamagnetic conditions of flame and gases [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1847, 31(210): 401–421. doi: 10.1080/14786444708645886
    [20] KUMAR M, AGARWAL S, KUMAR V, et al. Experimental investigation on butane diffusion flames under the influence of magnetic field by using digital speckle pattern interferometry [J]. Applied Optics, 2015, 54(9): 2450–60. doi: 10.1364/AO.54.002450
    [21] AGARWAL S, KUMAR M, SHAKHER C. Experimental investigation of the effect of magnetic field on temperature and temperature profile of diffusion flame using circular grating Talbot interferometer [J]. Optics and Lasers in Engineering, 2015, 68: 214–221. doi: 10.1016/j.optlaseng.2015.01.004
    [22] ITOH S, SHINODA M, KITAGAWA K, et al. Spatially resolved elemental analysis of a hydrogen-air diffusion flame by laser-induced plasma spectroscopy (LIPS) [J]. Microchemical Journal, 2001, 70(2): 143–152. doi: 10.1016/S0026-265X(01)00107-2
    [23] YAMADA E, SHINODA M, YAMASHITA H, et al. Experimental and numerical analyses of magnetic effect on OH radical distribution in a hydrogen-oxygen diffusion flame [J]. Combustion and Flame, 2003, 135: 365–379. doi: 10.1016/j.combustflame.2003.08.005
    [24] YAMADA E, SHINODA M, YAMASHITA H, et al. Influence of four kinds of gradient magnetic fields on hydrogen-oxygen flame [J]. AIAA Journal, 2003, 41(8): 1535–1541. doi: 10.2514/2.2104
    [25] 高建村, 王乐, 胡守涛, 等. 不同磁性金属丝对丙烷爆炸反应抑制机理研究 [J]. 中国安全生产科学技术, 2020, 16(7): 125–130. doi: 10.11731/j.issn.1673-193x.2020.07.020

    GAO J C, WANG L, HU S T, et al. Inhibition mechanism of different magnetic metal wires on propane explosion reaction [J]. China Safety Production Science and Technology, 2020, 16(7): 125–130. doi: 10.11731/j.issn.1673-193x.2020.07.020
    [26] 高建村, 杨喜港, 胡守涛, 等. 外加磁场对乙炔气体爆炸反应影响研究 [J]. 爆炸与冲击, 2022, 42(7): 075401.

    GAO J C, YANG X G, HU S T, et al. Effect of external magnetic field on acetylene gas explosion reaction [J]. Explosion and Shock Waves, 2022, 42(7): 075401.
    [27] 黄晓东, 王晓兵, 梅建, 等. 汽车加油(气)站、轻质燃油和液化石油气汽车罐车用阻隔防爆储罐技术要求: AQ 3001—2005 [S]. 北京: 国家安全生产监督管理总局, 2005.
    [28] 黄晓东, 王晓兵, 梅建, 等. 阻隔防爆撬装式汽车加油(气)装置技术要求: AQ 3002—2005 [S]. 北京: 国家安全生产监督管理总局, 2005.
    [29] WANG H, YOU X Q, JOSHI A V, et al. USC mech version Ⅱ. high-temperature combustion reaction model of H2/CO/C1-C4 compounds [DB/OL]. [2022-06-15]. http://ignis.usc.edu/USC_Mech_II.htm, 2007.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  109
  • PDF下载量:  35
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-14
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回