环形通道内爆轰波的起爆机制

贺顺江 任会兰 李健

贺顺江, 任会兰, 李健. 环形通道内爆轰波的起爆机制[J]. 高压物理学报, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610
引用本文: 贺顺江, 任会兰, 李健. 环形通道内爆轰波的起爆机制[J]. 高压物理学报, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610
HE Shunjiang, REN Huilan, LI Jian. Initiation Mechanism of Detonation Wave in an Annular Channel[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610
Citation: HE Shunjiang, REN Huilan, LI Jian. Initiation Mechanism of Detonation Wave in an Annular Channel[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610

环形通道内爆轰波的起爆机制

doi: 10.11858/gywlxb.20220610
基金项目: 国家自然科学基金(12072036)
详细信息
    作者简介:

    贺顺江(1995-),男,硕士研究生,主要从事气相爆轰研究. E-mail: 3120190130@bit.edu.cn

    通讯作者:

    李 健(1985-),男,博士,副教授,主要从事爆轰物理研究. E-mail:jian_li@bit.edu.cn

  • 中图分类号: O382.1; V211.7

Initiation Mechanism of Detonation Wave in an Annular Channel

  • 摘要: 旋转爆轰发动机环形燃烧室和预爆轰管的设计是影响发动机点火性能的关键因素。为了获得环形燃烧室中的起爆机制,使用多帧短时开快门摄像法,研究了不同含量氩气稀释的乙炔-氧气爆轰波经直管道沿切向进入环形通道中的传播过程和模式,重点关注爆轰波的失效和重新起爆机制。通过分析胞格模式发现环形通道内爆轰波的传播模式可以分为亚临界、临界和超临界3种状态。环形通道内爆轰波在顺时针和逆时针方向同时传播,根据初始压力和环形管道宽度的不同,会出现完全熄爆模式、熄爆-重新起爆模式和完全不熄爆模式,对应亚临界、临界和超临界3种状态。3种状态在顺时针和逆时针方向出现的顺序并不一致,相比较而言逆时针方向更易熄爆。研究同时也发现重新起爆通过两种方式实现:一种是通过解耦爆轰波与内壁面的反射以及其后的横向爆轰波,另外一种是通过燃烧转爆轰。通过分析直管的临界管径发现,随着环形通道宽度的增大,对于高浓度或低浓度氩气稀释的乙炔-氧气爆轰波,其临界管径均趋近于经典衍射问题中不稳定爆轰波的临界管径。实验研究结论将为旋转爆轰发动机燃烧室和预爆轰管的结构设计提供技术支持。

     

  • 图  爆轰实验装置示意图

    Figure  1.  Schematic diagram of the detonation experimental setup

    图  环形通道腔室

    Figure  2.  Annular channel chamber

    图  高速摄影图像及MSOP处理图

    Figure  3.  High-speed photographic images and MSOP processing image

    图  C2H2+2.5O2气体亚临界状态时的MSOP图像(p=0.83 kPa)

    Figure  4.  MSOP images of C2H2+2.5O2 gas in subcritical state (p=0.83 kPa)

    图  C2H2+2.5O2气体右侧临界状态时的MSOP图像(p=1.60 kPa)

    Figure  5.  MSOP images of C2H2+2.5O2 gas in the critical state on the right side (p=1.60 kPa)

    图  C2H2+2.5O2气体两侧临界状态时的MSOP图像

    Figure  6.  MSOP images in critical state on both sides of C2H2+2.5O2 gas

    图  C2H2+2.5O2气体超临界状态时的MSOP图像(p = 3.45 kPa)

    Figure  7.  MSOP images of C2H2+2.5O2 gas in super critical state (p = 3.45 kPa)

    图  空心圆筒内C2H2+2.5O2气体爆轰波的传播模式

    Figure  8.  Propagation mode of detonation wave of C2H2+2.5O2 gas in a hollow cylinder

    图  空心圆筒内C2H2+2.5O2+40%Ar气体爆轰波的传播模式

    Figure  9.  Propagation mode of detonation wave of C2H2+2.5O2+40%Ar gas in a hollow cylinder

    图  10  空心圆筒内C2H2+2.5O2+70%Ar气体爆轰波的传播模式

    Figure  10.  Detonation wave propagation mode of C2H2+2.5O2+70%Ar gas in a hollow cylinder

    图  11  环形通道内不同气体的起爆极限

    Figure  11.  Detonation limits of different gases in an annular channel

  • [1] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. doi: 10.1016/j.pecs.2004.05.001
    [2] BRAUN E M, LU F K, WILSON D R, et al. Airbreathing rotating detonation wave engine cycle analysis [J]. Aerospace Science and Technology, 2013, 27(1): 201–208. doi: 10.1016/j.ast.2012.08.010
    [3] SATO T, RAMAN V. Detonation structure in ethylene/air-based non-premixed rotating detonation engine [J]. Journal of Propulsion and Power, 2020, 36(5): 752–762. doi: 10.2514/1.B37664
    [4] 王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展 [J]. 实验流体力学, 2015, 29(4): 12–25. doi: 10.11729/syltlx20150048

    WANG J P, ZHOU R, WU D. Progress of continuously rotating detonation engine research [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12–25. doi: 10.11729/syltlx20150048
    [5] HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2019, 19(1): 1–10. doi: 10.1007/s00193-008-0178-2
    [6] CONNOLLY-BOUTIN S, JOSEPH V, NG H D, et al. Small-size rotating detonation engine: scaling and minimum mass flow rate [J]. Shock Waves, 2021, 31(7): 665–674. doi: 10.1007/s00193-021-00991-2
    [7] BRAUN E M, DUNN N L, LU F K. Testing of a continuous detonation wave engine with swirled injection [C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010.
    [8] FALEMPIN F, DANIAU E. A contribution to the development of actual continuous detonation wave engine [C]//Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton: AIAA, 2008.
    [9] 许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展 [J]. 航空学报, 2021, 42(12): 625842.

    XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625842.
    [10] LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion [J]. Combustion and Flame, 2016, 164: 137–151. doi: 10.1016/j.combustflame.2015.11.010
    [11] ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient [J]. Combustion and Flame, 2016, 173: 483–492. doi: 10.1016/j.combustflame.2016.04.003
    [12] 王健平, 张树杰, 姚松柏. 连续爆轰发动机的研究进展 [J]. 宇航总体技术, 2019, 3(2): 1–11, 25.

    WANG J P, ZHANG S J, YAO S B. Progress of continuous detonation engines [J]. Astronautical Systems Engineering Technology, 2019, 3(2): 1–11, 25.
    [13] 王健平, 姚松柏. 连续爆轰发动机原理与技术 [M]. 北京: 科学出版社, 2018.
    [14] XIA Z J, SHENG Z H, SHEN D W, et al. Numerical investigation of pre-detonator in rotating detonation engine [J]. International Journal of Hydrogen Energy, 2021, 46(61): 31428–31438. doi: 10.1016/j.ijhydene.2021.07.013
    [15] 褚驰, 翁春生, 武郁文, 等. 基于预爆轰点火方式的连续旋转爆轰发动机起爆过程分析 [J]. 弹道学报, 2021, 33(1): 1–10. doi: 10.12115/j.issn.1004-499X(2021)01-001

    CHU C, WENG C S, WU Y W, et al. Analysis of initiation process of continuous rotating detonation engine based on pre-detonation ignition [J]. Journal of Ballistics, 2021, 33(1): 1–10. doi: 10.12115/j.issn.1004-499X(2021)01-001
    [16] 徐灿, 马虎, 严宇, 等. 旋转爆震发动机工作特性试验研究 [J]. 弹道学报, 2017, 29(3): 74–81. doi: 10.3969/j.issn.1004-499X.2017.03.013

    XU C, MA H, YAN Y, et al. Experimental study on operating characteristics of rotating detonation engine [J]. Journal of Ballistics, 2017, 29(3): 74–81. doi: 10.3969/j.issn.1004-499X.2017.03.013
    [17] KATTA V R, CHO K Y, HOKE J L, et al. Effect of increasing channel width on the structure of rotating detonation wave [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3575–3583. doi: 10.1016/j.proci.2018.05.072
    [18] DING C W, WU Y W, XU G, et al. Effects of the oxygen mass fraction on the wave propagation modes in a kerosene-fueled rotating detonation combustor [J]. Acta Astronautica, 2022, 195: 204–214. doi: 10.1016/j.actaastro.2022.03.003
    [19] LI J, REN H L, NING J G. Numerical application of additive Runge-Kutta methods on detonation interaction with pipe bends [J]. International Journal of Hydrogen Energy, 2013, 38(21): 9016–9027. doi: 10.1016/j.ijhydene.2013.04.126
    [20] LI J, NING J G, ZHAO H, et al. Numerical investigation on the propagation mechanism of steady cellular detonations in curved channels [J]. Chinese Physics Letters, 2015, 32(4): 048202. doi: 10.1088/0256-307X/32/4/048202
    [21] THOMAS G O, WILLIAMS R L. Detonation interaction with wedges and bends [J]. Shock Waves, 2002, 11(6): 481–492. doi: 10.1007/s001930200133
    [22] DEITERDING R. Parallel adaptive simulation of multi-dimensional detonation structures [D]. Cottbus: Brandenburgische Technische Universität Cottbus, 2003.
    [23] 王昌建, 徐胜利, 郭长铭. 气相爆轰波在半圆形弯管中传播现象的实验研究 [J]. 爆炸与冲击, 2003, 23(5): 448–453. doi: 10.3321/j.issn:1001-1455.2003.05.011

    WANG C J, XU S L, GUO C M. Experimental investigation on gaseous detonation propagation through a semi-circle bend tube [J]. Explosion and Shock Waves, 2003, 23(5): 448–453. doi: 10.3321/j.issn:1001-1455.2003.05.011
    [24] KUDO Y, NAGURA Y, KASAHARA J, et al. Oblique detonation waves stabilized in rectangular-cross-section bent tubes [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2319–2326. doi: 10.1016/j.proci.2010.08.008
    [25] NAKAYAMA H, MORIYA T, KASAHARA J, et al. Stable detonation wave propagation in rectangular-cross-section curved channels [J]. Combustion and Flame, 2012, 159(2): 859–869. doi: 10.1016/j.combustflame.2011.07.022
    [26] SUGIYAMA Y, NAKAYAMA Y, MATSUO A, et al. Numerical investigations on detonation propagation in a two-dimensional curved channel [J]. Combustion Science and Technology, 2014, 186(10/11): 1662–1679. doi: 10.1080/00102202.2014.935621
    [27] 齐骏, 潘振华, 张彭岗, 等. 弯管内连续旋转爆轰波传播模式实验研究 [J]. 工程热物理学报, 2017, 38(2): 435–439.

    QI J, PAN Z H, ZHANG P G, et al. Experimental study on the propagation mode of continuous rotating detonation through the bend [J]. Journal of Engineering Thermophysics, 2017, 38(2): 435–439.
    [28] YUAN X Q, ZHOU J, LIN Z Y, et al. Adaptive simulations of detonation propagation in 90-degree bent tubes [J]. International Journal of Hydrogen Energy, 2016, 41(40): 18259–18272. doi: 10.1016/j.ijhydene.2016.07.130
    [29] JESUTHASAN A. Near-limit propagation of detonations in annular channels [D]. Montreal: McGill University, 2011.
    [30] GAO Y, NG H D, LEE J H S. Near-limit propagation of gaseous detonations in narrow annular channels [J]. Shock Waves, 2017, 27(2): 199–207. doi: 10.1007/s00193-016-0639-y
    [31] NAGURA Y, KASAHARA J, MATSUO A. Multi-frame visualization for detonation wave diffraction [J]. Shock Waves, 2016, 26(5): 645–656. doi: 10.1007/s00193-016-0663-y
    [32] LEE J H S. The detonation phenomenon [M]. Cambridge: Cambridge University Press, 2008.
    [33] ZHANG B, KAMENSKIHS V, NG H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2265–2271. doi: 10.1016/j.proci.2010.06.165
    [34] NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. doi: 10.1080/13647830500307758
  • 加载中
图(11)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  78
  • PDF下载量:  42
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-06-22
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回