Processing math: 100%

环形通道内爆轰波的起爆机制

贺顺江 任会兰 李健

李正鹏, 曲艳东. 爆炸载荷作用下焊缝区附近埋地X70钢管的动力响应分析[J]. 高压物理学报, 2020, 34(3): 034204. doi: 10.11858/gywlxb.20190831
引用本文: 贺顺江, 任会兰, 李健. 环形通道内爆轰波的起爆机制[J]. 高压物理学报, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610
LI Zhengpeng, QU Yandong. Dynamic Response Analysis of Buried X70 Steel Pipe near Weld Zone under Blast Loads[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034204. doi: 10.11858/gywlxb.20190831
Citation: HE Shunjiang, REN Huilan, LI Jian. Initiation Mechanism of Detonation Wave in an Annular Channel[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610

环形通道内爆轰波的起爆机制

doi: 10.11858/gywlxb.20220610
基金项目: 国家自然科学基金(12072036)
详细信息
    作者简介:

    贺顺江(1995-),男,硕士研究生,主要从事气相爆轰研究. E-mail: 3120190130@bit.edu.cn

    通讯作者:

    李 健(1985-),男,博士,副教授,主要从事爆轰物理研究. E-mail:jian_li@bit.edu.cn

  • 中图分类号: O382.1; V211.7

Initiation Mechanism of Detonation Wave in an Annular Channel

  • 摘要: 旋转爆轰发动机环形燃烧室和预爆轰管的设计是影响发动机点火性能的关键因素。为了获得环形燃烧室中的起爆机制,使用多帧短时开快门摄像法,研究了不同含量氩气稀释的乙炔-氧气爆轰波经直管道沿切向进入环形通道中的传播过程和模式,重点关注爆轰波的失效和重新起爆机制。通过分析胞格模式发现环形通道内爆轰波的传播模式可以分为亚临界、临界和超临界3种状态。环形通道内爆轰波在顺时针和逆时针方向同时传播,根据初始压力和环形管道宽度的不同,会出现完全熄爆模式、熄爆-重新起爆模式和完全不熄爆模式,对应亚临界、临界和超临界3种状态。3种状态在顺时针和逆时针方向出现的顺序并不一致,相比较而言逆时针方向更易熄爆。研究同时也发现重新起爆通过两种方式实现:一种是通过解耦爆轰波与内壁面的反射以及其后的横向爆轰波,另外一种是通过燃烧转爆轰。通过分析直管的临界管径发现,随着环形通道宽度的增大,对于高浓度或低浓度氩气稀释的乙炔-氧气爆轰波,其临界管径均趋近于经典衍射问题中不稳定爆轰波的临界管径。实验研究结论将为旋转爆轰发动机燃烧室和预爆轰管的结构设计提供技术支持。

     

  • 作为液体和气体长距离运输的一种重要方式,管道运输在国家经济发展和国民生活中发挥着重要作用。然而,随着城镇化进程的加速,城市管网系统密集分布,爆炸作用引起的管道安全问题受到国内外广泛关注[1-3]。都的箭等[4]通过实验研究发现,正对爆心管段背面受到很大的轴向拉应力作用,且管道受爆炸载荷的影响主要与爆心距有关。Ji等[5]研究了X70钢管在局部爆炸载荷下的动力响应,发现管道的挠度和损伤程度随炸药量和接触面积的增大而增大,且壁厚对管道损伤和失效后的运动有重要作用。数值模拟是研究爆炸问题的一种重要方法,只要方法得当,模拟效果可与实际情况相吻合[6-7]。为此,梁政等[8]利用数值模拟方法研究了管道埋深、药量和管道壁厚因素对爆炸载荷下的埋地管道动力响应的影响。房冲[9]通过模拟研究发现,在爆炸载荷下充水管道的变形量、位移和峰值压强都比内空管道小。余洋等[10]采用野外实验与数值计算相结合的方法研究了初始条件对钢质方管在侧向局部爆炸载荷作用下损伤破坏效应的影响。

    迄今为止,对爆炸载荷作用下焊缝区附近埋地钢管的动力响应的相关研究鲜有报道。基于此,以两种含Y型焊缝(坡口有2 mm余高焊缝和坡口无余高焊缝)的埋地X70钢管为例,采用有限元软件ANSYS/LS-DYNA,数值模拟研究爆炸载荷作用下焊缝区附近埋地X70钢管的动力响应规律,以期为埋地管线附近的爆破施工设计和埋地管线的安全防护提供一定的理论参考。

    采用cm-g-μs单位制,建立由TNT炸药、黄土和焊接管道组成的计算模型,如图1所示。模型纵向长38.4 cm,管道中心到模型侧面的宽度为130.0 cm,模型整体高271.6 cm,其中:TNT炸药为边长14.0 cm的正方体,采用中心起爆方式;焊接管道为外径1 016.0 mm、壁厚14.6 mm的X70钢管。焊缝选取两种尺寸[11],分别为Y型坡口有余高(H = 2.0 mm)焊缝和Y型坡口无余高(H = 0)焊缝,如图2所示。为了提高计算收敛速度,将焊缝尺寸设计图进行适当的简化,简化模型如图3所示。两种焊缝均不考虑分层焊接工艺的影响,焊缝与管道采用共节点方式连接。

    图  1  计算模型
    Figure  1.  Calculation model
    图  2  焊缝的设计尺寸
    Figure  2.  Design of weld size
    图  3  焊缝的简化模型
    Figure  3.  Simplified diagram of weld model

    考虑到计算模型的对称性,取1/2模型建模。炸药、黄土、管道及焊缝选用SOLID164六面体实体单元,用扫掠方式划分网格,并对焊缝位置进行网格细化处理。炸药和黄土采用欧拉网格,焊接管道和焊缝采用拉格朗日网格,运用任意拉格朗日-欧拉算法及管土间流固耦合算法模拟爆炸载荷作用下埋地焊接管道的动力响应。在土体外侧和底面设置透射边界条件,模型对称面施加对称约束。

    为了初步揭示爆炸载荷作用下两种焊缝形式的埋地焊接管道的动力响应规律,选取药包尺寸为14.0 cm × 14.0 cm × 14.0 cm的TNT炸药,对埋深为1.5 m的焊缝有余高(H = 2.0 mm)管道(管道A)和焊缝无余高(H = 0)管道(管道B),在炸高分别为60.0、85.0和110.0 cm的3种条件下的6种工况进行模拟计算,如表1所示,其中,hB为炸高。

    表  1  计算工况
    Table  1.  Calculation conditions
    Weld typeBuried depth of pipeline/mSize of TNT/(cm × cm × cm)hB/cm
    No weld reinforcement (H = 0)1.514.0 × 14.0 × 14.060.0, 85.0, 110.0
    Weld reinforcement (H = 2.0 mm)1.514.0 × 14.0 × 14.060.0, 85.0, 110.0
    下载: 导出CSV 
    | 显示表格

    TNT炸药选用高能炸药模型(Mat_High_Explosive_Burn)和JWL状态方程定义。JWL状态方程表达式为

    pz=A(1ωR1ν)eR1ν+B(1ωR2ν)eR2ν+ωEν
    (1)

    式中:pz为爆炸产物的压力,ABR1R2ω为TNT材料常数,v为爆炸产物的相对比容,E为炸药初始内能。炸药密度ρz、爆速D以及JWL状态方程参数见表2[12]

    表  2  炸药材料参数[12]
    Table  2.  Material parameters of explosive[12]
    ρz/(g·cm–3)D/(m·s–1)p/GPaA/GPaB/GPaR1R2ωE/(J·cm–3)
    1.586 93021373.773.754.150.900.356 000
    下载: 导出CSV 
    | 显示表格

    黄土选用泡沫模型(Mat_Soil_and_Foam)描述。该材料模型的应力屈服常数f

    f=Sijδij/2(a0+a1pt+a2pt2)
    (2)

    式中:Sij为土体材料的Cauchy偏应力张量,δij为土体材料的Kronecker系数,a0a1a2分别为土体摩擦角、土体黏聚力和土体爆炸动载效应的影响系数,pt为土体压力。a0a1a2由土工实验测得的内摩擦角和土壤黏聚力参数确定,土体密度ρt、剪切模量G、体积模量K等参数见表3[13-14]

    表  3  土体材料参数[1314]
    Table  3.  Material parameters of soil[1314]
    ρt/(g·cm–3)G/MPaK/MPaa0/Pa2a1/Paa2
    1.841.1487.872.12 × 1085.23 × 1033.22 × 10–2
    下载: 导出CSV 
    | 显示表格

    X70钢管道和焊缝均采用双线性随动材料模型(Mat_Plastic_Kinematic)描述,遵循von Mises屈服准则,其表达式为

    σ={Esεεεeσy+Et(εεe)ε>εe
    (3)

    式中:σ为应力;σy为屈服应力;Es为弹性模量;Et为切线模量,0 < Et < Esε为应变;εe为弹性极限应变。管道和焊缝的具体材料参数见表4[15-18],其中,μ为泊松比。

    表  4  管道及焊缝材料参数[1518]
    Table  4.  Material parameters of pipe and weld bead[1518]
    Materialρ/(g·cm–3)μEs/GPaEt/GPaσy/GPa
    X70-pipeline[1516]7.900.321013.50.48
    Weld bead[1718]7.250.322015.30.55
    下载: 导出CSV 
    | 显示表格

    图4为边长14.0 cm的正方体TNT炸药爆炸时,炸高hB为60.0 cm,埋深为1.5 m的两种X70管道焊缝附近的von-Mises应力云图。由图4可以看出:当传播时间为1 440 μs时,爆炸应力波阵面已经接触管道;当传播时间为1 600 μs时,焊缝有2.0 mm余高的管道A和焊缝无余高的管道B的最大应力增幅分别为81.4 MPa和43.0 MPa;当传播时间为1 920 μs时,管道A和管道B的最大应力均大于焊缝与管道的材料屈服应力,且应力沿迎爆面正对爆心位置向外扩展,其中管道A的应力呈“十”字形扩展,而管道B的应力以椭圆形向四周扩展;在3 520 μs时,管道应力集中主要沿裂缝位置发展,管道A和管道B的应力最大值分别为601.2 MPa和591.0 MPa;在6 080 μs时,管道A和管道B继续变形但应力减小,应力最大值分别减小到581.8 MPa和565.8 MPa;在9 120 μs时,管道A和管道B的应力集中基本消失。

    图  4  不同时刻X70钢管道的von Mises应力
    Figure  4.  von Mises stress of X70 steel pipe at different moments

    图5图6分别为两种管道外表面上正对爆心位置的焊缝与管道分界面处焊缝单元与管道单元的应力时程曲线。在管道受爆炸载荷作用阶段,两种管道的应力在大约480 μs内呈跳跃式上升。其主要原因是管道为瞬时受力,一部分爆炸能量使管道变形并向管道四周传递,导致焊缝与管道分界面处两个典型单元的应力呈降低趋势,此现象与图4的应力云图吻合。根据应力集中系数和余高关系的经验公式[19]可得:管道A和管道B的应力集中系数分别为1.016和1.008,即随着余高增大,应力集中系数逐渐增大。对比图5图6可知,管道A的焊缝单元应力峰值较高,应力下降趋势相对较陡。这也说明焊缝余高的存在使得焊缝与管道分界面的截面尺寸突变增大,从而导致焊缝有余高的焊接管道受应力集中的影响较大。在1 912 μs时,图5(管道A)和图6(管道B)的焊缝单元应力最大,分别约为560.0 MPa(焊缝的屈服强度为550 MPa)和545.6 MPa。同时,管道A的焊缝处首先达到管道屈服强度(480 MPa),按照von Mises屈服准则,管道A开始进入局部塑性变形阶段,此时管道B的应力尚未达到材料的屈服强度。

    图  5  管道A(H = 2.0 mm)典型单元的应力时程曲线
    Figure  5.  Stress-time curves of classic element of A pipe (H = 2.0 mm)
    图  6  管道B(H = 0)典型单元的应力时程曲线
    Figure  6.  Stress-time curves of classic element of B pipe (H = 0)

    埋地X70管道的迎爆面和背爆面的最大位移如表5所示。从表5可知,由于爆炸冲击波的一部分能量在土中被耗散,且随着爆炸冲击波在土中传播距离的增大,两种焊缝形式管道的迎爆面和背爆面的最大位移均呈现减小的趋势。当炸高hB从60.0 cm增加到85.0 cm以及从85.0 cm增加到110.0 cm时,管道A和管道B迎爆面的最大位移减小量分别为2.303 cm、0.715 cm和2.300 cm、0.572 cm,而管道A和管道B背爆面的最大位移减小量分别为0.391 cm、0.235 cm和0.373 cm、0.280 cm。两种焊缝形式管道迎爆面的最大位移减小量大于背爆面,这是由于爆炸冲击载荷在土中传播后直接作用于管道迎爆面,对管道迎爆面产生的影响较大,土体对管道背爆面具有一定的支撑作用,从而减小了管道背爆面位移。在相同炸高下管道A比管道B的最大位移大,且在炸高为60.0、85.0和110.0 cm时,两种焊缝形式管道迎爆面的最大位移差值分别为0.270、0.267和0.124 cm,即随着炸高的增大,两种焊缝形式的埋地焊接管道最大位移的差值逐渐减小,也说明当炸高较小时,管道A整体抵抗变形的能力弱于管道B。然而,随着炸高的增大,作用于管道的能量减小[20],管道塑性变形较小,使得这种现象逐渐模糊。

    表  5  埋地X70管道的迎爆面和背爆面的最大位移
    Table  5.  Maximum displacement of explosion-front and explosion-back surfaces of buried X70 pipeline
    Types of weldhB/cmMaximum displacement/cm
    Explosion-front surfaceExplosion-back surface
    Weld reinforcement (H = 2.0 mm) 60.05.4820.846
    85.03.1790.455
    110.02.4640.220
    No weld reinforcement (H = 0) 60.05.2120.943
    85.02.9120.570
    110.02.3400.290
    下载: 导出CSV 
    | 显示表格

    表6为两种不同类型焊缝的埋地焊接管道在不同炸高下的最大等效应变统计。从表6可知,管道A和管道B的最大等效应变均随炸高的增大而减小。当炸高从60.0 cm增大到85.0 cm时,管道A和管道B的最大等效应变分别减小约58.12%和61.13%;当炸高从85.0 cm增大到110.0 cm时,管道A和管道B的最大等效应变分别减小约45.92%和38.05%,在炸高相同时,管道A的最大等效应变大于管道B,且管道A的最大等效应变位于焊缝余高表面,而管道B的最大等效应变在焊缝与管道处一定范围内沿纵向分布。这在一定程度上说明管道B能更好地协调焊缝与管道分界处的应变,有利于保障焊缝与管道的局部协同变形性能。

    表  6  不同炸高时埋地X70管道的最大等效应变
    Table  6.  Maximum effective strain of buried X70 pipeline with different blasting heights
    Types of weldhB/cmPeak effective strain/10–3
    Weld reinforcement
    (H = 2.0 mm)
    60.09.937
    85.04.162
    110.02.251
    No weld reinforcement
    (H = 0)
    60.06.877
    85.02.673
    110.01.656
    下载: 导出CSV 
    | 显示表格

    表7为不同炸高下两种焊缝形式管道的迎爆面和背爆面处焊缝位置中心单元X方向的最大振动速度。从表7可以看出,两种焊缝形式管道的迎爆面和背爆面的最大振动速度均随着炸高增大而减小,且迎爆面的最大振速均大于背爆面。这说明迎爆面受爆炸地震波的影响较大。当炸高hB为60.0、85.0和110.0 cm时,管道B的迎爆面的最大振动速度较管道A大,迎爆面差值分别为1.600、0.539和0.329 m/s,而背爆面差值在0.200 m/s以内。管道峰值速度随着管壁厚度的增大而减小[12],由于管道A增加了管道在焊缝位置的径向厚度,可将其视为管道焊缝位置的壁厚增大导致管道A的峰值振速减小。这说明管道A抵抗爆炸振动的性能优于管道B,且在炸高为60.0 cm时,管道A抵抗振动性能的优势较为明显。

    表  7  埋地X70管道的迎爆面和背爆面最大振速
    Table  7.  Maximum vibration velocity of explosion-front and explosion-back surfaces of buried X70 pipeline
    Types of weldhB/cmMaximum vibration velocity/(m·s–1)
    Explosion-front surfaceExplosion-back surface
    Weld reinforcement (H = 2.0 mm) 60.022.7484.431
    85.0 9.3162.817
    110.0 4.5031.693
    No weld reinforcement (H = 0) 60.024.3484.294
    85.0 9.8552.867
    110.0 4.8321.746
    下载: 导出CSV 
    | 显示表格

    图7为不同炸高时两种焊缝形式的管道典型单元的速度时程曲线。当炸高hB分别为60.0、85.0和110.0 cm时,管道A和管道B达到最大振速的时间分别为2 560 μs和2 560 μs、4 500 μs和4 600 μs、7 200 μs和7 200 μs,两种焊缝形式的管道达到最大振速的时间差值均在100 μs以内。这说明两种焊缝形式的管道达到最大振速的时间主要受炸高的影响,受焊缝形式的影响较小。

    图  7  管道典型单元的速度时程曲线
    Figure  7.  Velocity-time curve of typical pipeline elements

    (1)当炸高为60.0 cm时,两种焊缝形式的埋地X70焊接管道在爆炸载荷作用下焊缝位置均出现应力集中,但焊缝有余高的管道受应力集中影响较大,且会先于焊缝无余高管道进入屈服阶段。

    (2)当炸高为60.0~110.0 cm时,由于爆炸载荷直接作用于迎爆面,且管土间的相互作用对管道背爆面具有一定的支撑作用,两种焊缝形式管道迎爆面的最大位移均大于背爆面的最大位移。当炸高为60.0、85.0 cm时,焊缝有余高的管道整体抵抗变形的能力明显弱于焊缝无余高的管道。

    (3)焊缝无余高管道较焊缝有余高管道在焊缝与管道分界处的应变更为协调,能更好地保障焊缝与管道的局部协同变形性能。

    (4)在相同的爆炸载荷下,焊缝有余高管道抵抗振动的性能优于焊缝无余高管道。药量相同条件下,相对于焊缝形式,炸高对含焊缝区管道的最大振速起主要作用。

  • 图  爆轰实验装置示意图

    Figure  1.  Schematic diagram of the detonation experimental setup

    图  环形通道腔室

    Figure  2.  Annular channel chamber

    图  高速摄影图像及MSOP处理图

    Figure  3.  High-speed photographic images and MSOP processing image

    图  C2H2+2.5O2气体亚临界状态时的MSOP图像(p=0.83 kPa)

    Figure  4.  MSOP images of C2H2+2.5O2 gas in subcritical state (p=0.83 kPa)

    图  C2H2+2.5O2气体右侧临界状态时的MSOP图像(p=1.60 kPa)

    Figure  5.  MSOP images of C2H2+2.5O2 gas in the critical state on the right side (p=1.60 kPa)

    图  C2H2+2.5O2气体两侧临界状态时的MSOP图像

    Figure  6.  MSOP images in critical state on both sides of C2H2+2.5O2 gas

    图  C2H2+2.5O2气体超临界状态时的MSOP图像(p = 3.45 kPa)

    Figure  7.  MSOP images of C2H2+2.5O2 gas in super critical state (p = 3.45 kPa)

    图  空心圆筒内C2H2+2.5O2气体爆轰波的传播模式

    Figure  8.  Propagation mode of detonation wave of C2H2+2.5O2 gas in a hollow cylinder

    图  空心圆筒内C2H2+2.5O2+40%Ar气体爆轰波的传播模式

    Figure  9.  Propagation mode of detonation wave of C2H2+2.5O2+40%Ar gas in a hollow cylinder

    图  10  空心圆筒内C2H2+2.5O2+70%Ar气体爆轰波的传播模式

    Figure  10.  Detonation wave propagation mode of C2H2+2.5O2+70%Ar gas in a hollow cylinder

    图  11  环形通道内不同气体的起爆极限

    Figure  11.  Detonation limits of different gases in an annular channel

  • [1] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. doi: 10.1016/j.pecs.2004.05.001
    [2] BRAUN E M, LU F K, WILSON D R, et al. Airbreathing rotating detonation wave engine cycle analysis [J]. Aerospace Science and Technology, 2013, 27(1): 201–208. doi: 10.1016/j.ast.2012.08.010
    [3] SATO T, RAMAN V. Detonation structure in ethylene/air-based non-premixed rotating detonation engine [J]. Journal of Propulsion and Power, 2020, 36(5): 752–762. doi: 10.2514/1.B37664
    [4] 王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展 [J]. 实验流体力学, 2015, 29(4): 12–25. doi: 10.11729/syltlx20150048

    WANG J P, ZHOU R, WU D. Progress of continuously rotating detonation engine research [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12–25. doi: 10.11729/syltlx20150048
    [5] HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2019, 19(1): 1–10. doi: 10.1007/s00193-008-0178-2
    [6] CONNOLLY-BOUTIN S, JOSEPH V, NG H D, et al. Small-size rotating detonation engine: scaling and minimum mass flow rate [J]. Shock Waves, 2021, 31(7): 665–674. doi: 10.1007/s00193-021-00991-2
    [7] BRAUN E M, DUNN N L, LU F K. Testing of a continuous detonation wave engine with swirled injection [C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010.
    [8] FALEMPIN F, DANIAU E. A contribution to the development of actual continuous detonation wave engine [C]//Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton: AIAA, 2008.
    [9] 许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展 [J]. 航空学报, 2021, 42(12): 625842.

    XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625842.
    [10] LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion [J]. Combustion and Flame, 2016, 164: 137–151. doi: 10.1016/j.combustflame.2015.11.010
    [11] ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient [J]. Combustion and Flame, 2016, 173: 483–492. doi: 10.1016/j.combustflame.2016.04.003
    [12] 王健平, 张树杰, 姚松柏. 连续爆轰发动机的研究进展 [J]. 宇航总体技术, 2019, 3(2): 1–11, 25.

    WANG J P, ZHANG S J, YAO S B. Progress of continuous detonation engines [J]. Astronautical Systems Engineering Technology, 2019, 3(2): 1–11, 25.
    [13] 王健平, 姚松柏. 连续爆轰发动机原理与技术 [M]. 北京: 科学出版社, 2018.
    [14] XIA Z J, SHENG Z H, SHEN D W, et al. Numerical investigation of pre-detonator in rotating detonation engine [J]. International Journal of Hydrogen Energy, 2021, 46(61): 31428–31438. doi: 10.1016/j.ijhydene.2021.07.013
    [15] 褚驰, 翁春生, 武郁文, 等. 基于预爆轰点火方式的连续旋转爆轰发动机起爆过程分析 [J]. 弹道学报, 2021, 33(1): 1–10. doi: 10.12115/j.issn.1004-499X(2021)01-001

    CHU C, WENG C S, WU Y W, et al. Analysis of initiation process of continuous rotating detonation engine based on pre-detonation ignition [J]. Journal of Ballistics, 2021, 33(1): 1–10. doi: 10.12115/j.issn.1004-499X(2021)01-001
    [16] 徐灿, 马虎, 严宇, 等. 旋转爆震发动机工作特性试验研究 [J]. 弹道学报, 2017, 29(3): 74–81. doi: 10.3969/j.issn.1004-499X.2017.03.013

    XU C, MA H, YAN Y, et al. Experimental study on operating characteristics of rotating detonation engine [J]. Journal of Ballistics, 2017, 29(3): 74–81. doi: 10.3969/j.issn.1004-499X.2017.03.013
    [17] KATTA V R, CHO K Y, HOKE J L, et al. Effect of increasing channel width on the structure of rotating detonation wave [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3575–3583. doi: 10.1016/j.proci.2018.05.072
    [18] DING C W, WU Y W, XU G, et al. Effects of the oxygen mass fraction on the wave propagation modes in a kerosene-fueled rotating detonation combustor [J]. Acta Astronautica, 2022, 195: 204–214. doi: 10.1016/j.actaastro.2022.03.003
    [19] LI J, REN H L, NING J G. Numerical application of additive Runge-Kutta methods on detonation interaction with pipe bends [J]. International Journal of Hydrogen Energy, 2013, 38(21): 9016–9027. doi: 10.1016/j.ijhydene.2013.04.126
    [20] LI J, NING J G, ZHAO H, et al. Numerical investigation on the propagation mechanism of steady cellular detonations in curved channels [J]. Chinese Physics Letters, 2015, 32(4): 048202. doi: 10.1088/0256-307X/32/4/048202
    [21] THOMAS G O, WILLIAMS R L. Detonation interaction with wedges and bends [J]. Shock Waves, 2002, 11(6): 481–492. doi: 10.1007/s001930200133
    [22] DEITERDING R. Parallel adaptive simulation of multi-dimensional detonation structures [D]. Cottbus: Brandenburgische Technische Universität Cottbus, 2003.
    [23] 王昌建, 徐胜利, 郭长铭. 气相爆轰波在半圆形弯管中传播现象的实验研究 [J]. 爆炸与冲击, 2003, 23(5): 448–453. doi: 10.3321/j.issn:1001-1455.2003.05.011

    WANG C J, XU S L, GUO C M. Experimental investigation on gaseous detonation propagation through a semi-circle bend tube [J]. Explosion and Shock Waves, 2003, 23(5): 448–453. doi: 10.3321/j.issn:1001-1455.2003.05.011
    [24] KUDO Y, NAGURA Y, KASAHARA J, et al. Oblique detonation waves stabilized in rectangular-cross-section bent tubes [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2319–2326. doi: 10.1016/j.proci.2010.08.008
    [25] NAKAYAMA H, MORIYA T, KASAHARA J, et al. Stable detonation wave propagation in rectangular-cross-section curved channels [J]. Combustion and Flame, 2012, 159(2): 859–869. doi: 10.1016/j.combustflame.2011.07.022
    [26] SUGIYAMA Y, NAKAYAMA Y, MATSUO A, et al. Numerical investigations on detonation propagation in a two-dimensional curved channel [J]. Combustion Science and Technology, 2014, 186(10/11): 1662–1679. doi: 10.1080/00102202.2014.935621
    [27] 齐骏, 潘振华, 张彭岗, 等. 弯管内连续旋转爆轰波传播模式实验研究 [J]. 工程热物理学报, 2017, 38(2): 435–439.

    QI J, PAN Z H, ZHANG P G, et al. Experimental study on the propagation mode of continuous rotating detonation through the bend [J]. Journal of Engineering Thermophysics, 2017, 38(2): 435–439.
    [28] YUAN X Q, ZHOU J, LIN Z Y, et al. Adaptive simulations of detonation propagation in 90-degree bent tubes [J]. International Journal of Hydrogen Energy, 2016, 41(40): 18259–18272. doi: 10.1016/j.ijhydene.2016.07.130
    [29] JESUTHASAN A. Near-limit propagation of detonations in annular channels [D]. Montreal: McGill University, 2011.
    [30] GAO Y, NG H D, LEE J H S. Near-limit propagation of gaseous detonations in narrow annular channels [J]. Shock Waves, 2017, 27(2): 199–207. doi: 10.1007/s00193-016-0639-y
    [31] NAGURA Y, KASAHARA J, MATSUO A. Multi-frame visualization for detonation wave diffraction [J]. Shock Waves, 2016, 26(5): 645–656. doi: 10.1007/s00193-016-0663-y
    [32] LEE J H S. The detonation phenomenon [M]. Cambridge: Cambridge University Press, 2008.
    [33] ZHANG B, KAMENSKIHS V, NG H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2265–2271. doi: 10.1016/j.proci.2010.06.165
    [34] NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. doi: 10.1080/13647830500307758
  • 加载中
图(11)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  120
  • PDF下载量:  44
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-06-22
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-02-05

目录

/

返回文章
返回