平板撞击和磁驱动加载下铈镧合金的相变

朱浏镇 李江涛 徐亮 李绪海 罗斌强 胡建波

朱浏镇, 李江涛, 徐亮, 李绪海, 罗斌强, 胡建波. 平板撞击和磁驱动加载下铈镧合金的相变[J]. 高压物理学报, 2022, 36(6): 061102. doi: 10.11858/gywlxb.20220607
引用本文: 朱浏镇, 李江涛, 徐亮, 李绪海, 罗斌强, 胡建波. 平板撞击和磁驱动加载下铈镧合金的相变[J]. 高压物理学报, 2022, 36(6): 061102. doi: 10.11858/gywlxb.20220607
ZHU Liuzhen, LI Jiangtao, XU Liang, LI Xuhai, LUO Binqiang, HU Jianbo. Phase Transition of Cerium-Lanthanum Alloys under Planar Impact and Magnetically Driven Ramp Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 061102. doi: 10.11858/gywlxb.20220607
Citation: ZHU Liuzhen, LI Jiangtao, XU Liang, LI Xuhai, LUO Binqiang, HU Jianbo. Phase Transition of Cerium-Lanthanum Alloys under Planar Impact and Magnetically Driven Ramp Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 061102. doi: 10.11858/gywlxb.20220607

平板撞击和磁驱动加载下铈镧合金的相变

doi: 10.11858/gywlxb.20220607
基金项目: 国家自然科学基金(12072331);冲击与安全工程教育部重点实验室开放基金(CJ201908);高压物理与地震科技联合实验室开放基金(2019HPPES04);冲击波物理与爆轰物理重点实验室基金(2021JCJQLB05705)
详细信息
    作者简介:

    朱浏镇(1996-),男,硕士研究生,主要从事冲击动力学实验研究. E-mail:1131329162@qq.com

    通讯作者:

    李江涛(1987-),男,博士,副研究员,主要从事冲击波物理与相变动力学研究. E-mail:lchero08@163.com

    胡建波(1980-),男,博士,研究员,主要从事冲击波物理与爆炸力学研究. E-mail:jianbo.hu@caep.cn

  • 中图分类号: O521.2

Phase Transition of Cerium-Lanthanum Alloys under Planar Impact and Magnetically Driven Ramp Loading

  • 摘要: 为探究铈镧合金在γ相区的压缩特性以及加载应变率对铈镧合金动态相变行为的影响,采用火炮驱动平面撞击和磁驱动斜波压缩两种加载方式对铈镧合金(Ce-5%La,La的质量分数为5%)进行动态加载,通过测量波剖面获得铈镧合金在γ相区的弹塑性转变、状态方程以及γα相变压力。结果表明,铈镧合金在平面撞击下会形成准等熵压缩波,证实铈镧合金在γ相区具有理论预测的反常压缩特性。正因为这一反常压缩特性,两种加载方式下铈镧合金在γ相区的应变率响应非常接近,从而导致γα相变压力对加载应变率不敏感。镧的掺入显著提高了铈合金的动态相变压力,显示出该相变具有4f电子驱动结构相变的特征。

     

  • 图  火炮驱动平面碰撞铈镧合金样品靶装置示意图

    Figure  1.  Schematic diagram of the planar impact of CeLa alloys driven by a powder gun

    图  铈镧合金样品的磁驱加载实验示意图(a)以及驱动电极-LiF窗口界面粒子速度变化曲线(b)

    Figure  2.  Schematic diagram of magnetically driven compression of the CeLa alloys (a) and the electrode-LiF window interface velocity (b)

    图  磁驱动斜波加载和平面撞击下铈镧合金的样品-窗口界面粒子速度和1/2自由面粒子速度

    Figure  3.  CeLa-LiF interface velocity and 1/2 free surface velocities of the CeLa alloys under magnetically driven loading and planar impact loading

    图  拉格朗日坐标下平面撞击铈镧合金样品中的压缩波传播及其波剖面特征(t0t1t2t3t4分别为飞片撞击时刻、HEL、P1波到达自由面时刻、P2波到达自由面时刻、P2波进入平台区时刻)

    Figure  4.  Propagation of the compression waves in the CeLa alloy sample under planar impact in the Lagrangian coordinate system and their features on the free surface velocity profile (t0, t1, t2, t3, and t4 represent the impact time by the flyer and the arrival times of the HEL, P1 and P2 waves, and the time when the P2 waves reach a plateau, respectively.)

    图  铈镧合金在γ相区的状态方程(红色阴影区域代表实验数据的不确定度,不确定度来自不同DPS探头诊断结果的分散性和波动性)

    Figure  5.  Equation of state of CeLa alloys in the γ phase (The uncertainties of the experimental data are shown by the shaded red region, originated from the diversity and fluctuations of the velocity profiles measurements.)

    图  磁驱动加载下铈镧合金样品与LiF窗口界面粒子速度拐点的阻抗匹配分析(阴影区域代表实验数据的不确定度,来自图5(b))

    Figure  6.  A graphical impedance matching analysis of the turning point in the CeLa-LiF interfacial velocity profile under magnetically driven loading (The uncertainties of the experimental data are shown by the shaded region, originated from the data in Fig. 5(b).)

    表  1  铈镧合金(Ce-5%La)在不同加载条件下的主要诊断结果

    Table  1.   Main diagnostic results of CeLa alloys (Ce-5%La) under different loading techniques

    Shot No. Thickness/mmLoading technique Strain rate/s−1pHEL/MPaptr/GPapH/GPa
    13.0Powder-gun-driven planar impact4.4×104132±21.05±0.021.20±0.02
    21.2Magnetically driven ramp compression3.8×1041.03±0.02
    下载: 导出CSV

    表  2  采用不同方法得到的不同加载应变率下铈镧合金(Ce-5%La)的相变压力

    Table  2.   Phase transition pressure of CeLa alloys (Ce-5%La) under different strain rates obtained by different methods

    Methodγα phase transition pressure/GPa
    Powder-gun-driven planar impact1.05±0.02
    Magnetically driven ramp compression1.03±0.02
    Quasi-static compression0.99±0.01[17]
    First-principles calculation1.20±0.01[16]
    下载: 导出CSV
  • [1] MAURICE M, TOSI N, SCHWINGER S, et al. A long-lived magma ocean on a young Moon [J]. Science Advances, 2020, 6(28): eaba8949. doi: 10.1126/sciadv.aba8949
    [2] BARBONI M, BOEHNKE P, KELLER B, et al. Early formation of the Moon 4.51 billion years ago [J]. Science Advances, 2017, 3(1): e1602365. doi: 10.1126/sciadv.1602365
    [3] MUELHAUPT T J, SORGE M E, MORIN J, et al. Space traffic management in the new space era [J]. Journal of Space Safety Engineering, 2019, 6(2): 80–87. doi: 10.1016/j.jsse.2019.05.007
    [4] KOKELAAR P, BUSBY C. Subaqueous explosive eruption and welding of pyroclastic deposits [J]. Science, 1992, 257(5067): 196–201. doi: 10.1126/science.257.5067.196
    [5] MEYERS M A. 材料的动力学行为 [M]. 张庆明, 刘彦, 黄风雷, 等, 译. 北京: 国防工业出版社, 2006.
    [6] XU L, WANG Z G, LI Z G, et al. Liquid-liquid phase transition in molten cerium during shock release [J]. Applied Physics Letters, 2021, 118(7): 074102. doi: 10.1063/5.0040437
    [7] LIPP M J, JENEI Z, CYNN H, et al. Anomalous elastic properties across the γ to α volume collapse in cerium [J]. Nature Communications, 2017, 8(1): 1198. doi: 10.1038/s41467-017-01411-9
    [8] ZUBAREVA A N, SOSIKOV V A, UTKIN A V. Investigation of anomalous compressibility of docosane and cerium under shock-wave action [J]. Journal of Physics: Conference Series, 2015, 653(1): 012035. doi: 10.1088/1742-6596/653/1/012035
    [9] ZUBAREVA A N, KOLESNIKOV S A, UTKIN A V. Experimental investigation of dynamic compression and spallation of cerium at pressures up to 6 GPa [J]. Journal of Physics: Conference Series, 2014, 500(3): 032010. doi: 10.1088/1742-6596/500/3/032010
    [10] LIPP M J, JENEI Z, RUDDLE D, et al. Equation of state measurements by radiography provide evidence for a liquid-liquid phase transition in cerium [J]. Journal of Physics: Conference Series, 2014, 500(3): 032011. doi: 10.1088/1742-6596/500/3/032011
    [11] 潘昊, 胡晓棉, 吴子辉, 等. 铈低压冲击相变数值模拟研究 [J]. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401

    PAN H, HU X M, WU Z H, et al. Numerical study of shock-induced phase transformation of cerium under low pressure [J]. Acta Physica Sinica, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [12] LIPP M J, JACKSON D, CYNN H, et al. Thermal signatures of the kondo volume collapse in cerium [J]. Physical Review Letters, 2008, 101(16): 165703. doi: 10.1103/PhysRevLett.101.165703
    [13] JOHANSSON B, RUBAN A V, ABRIKOSOV I A. Comment on “thermal signatures of the kondo volume collapse in cerium” [J]. Physical Review Letters, 2009, 102(18): 189601. doi: 10.1103/PhysRevLett.102.189601
    [14] ALLEN J W, MARTIN R M. Kondo volume collapse and the γα transition in cerium [J]. Physical Review Letters, 1982, 49(15): 1106–1110. doi: 10.1103/physrevlett.49.1106
    [15] MOTT N F, JONES H. The theory of the properties of metals and alloys [M]. London: Oxford University Press, 1936.
    [16] ZENG Z Y, HU C E, LI Z G, et al. High pressure phase transition of Ce-La alloy from first-principles calculations [J]. Journal of Alloys and Compounds, 2015, 640: 201–204. doi: 10.1016/j.jallcom.2015.04.001
    [17] DEGTYAREVA O, HOLZAPFEL W B. High pressure phase diagrams of binary lanthanide alloys between La, Ce and Pr [J]. High Pressure Research, 2000, 18(1): 297–303. doi: 10.1080/08957950008200983
    [18] WENG J D, WANG X, MA Y, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser [J]. Review of Scientific Instruments, 2008, 79(11): 113101. doi: 10.1063/1.3020700
    [19] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
    [20] LU Y, CHEN K G, CHENG C, et al. A compact platform for the investigation of material dynamics in quasi-isentropic compression to ~19 GPa [J]. Scientific Reports, 2021, 11(1): 20688. doi: 10.1038/s41598-021-99479-3
    [21] ATROSHENKO S A, ZUBAREVA A N, MOROZOV V A, et al. Specific features of the response of cerium to pulsed actions [J]. Physics of the Solid State, 2018, 60(2): 238–243. doi: 10.1134/S106378341802004X
    [22] SMITH R F, MINICH R W, RUDD R E, et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon [J]. Physical Review B, 2012, 86(24): 245204. doi: 10.1103/PhysRevB.86.245204
    [23] AVRAMI M. Kinetics of phase change.Ⅰ general theory [J]. The Journal of Chemical Physics, 1939, 7(12): 1103–1112. doi: 10.1063/1.1750380
    [24] AVRAMI M. Kinetics of phase change.Ⅱ transformation-time relations for random distribution of nuclei [J]. The Journal of Chemical Physics, 1940, 8(2): 212–224. doi: 10.1063/1.1750631
    [25] AVRAMI M. Granulation, phase change, and microstructure kinetics of phase change. Ⅲ [J]. The Journal of Chemical Physics, 1941, 9(2): 177–184. doi: 10.1063/1.1750872
    [26] SMITH R F, EGGERT J H, SACULLA M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth [J]. Physical Review Letters, 2008, 101(6): 065701. doi: 10.1103/PhysRevLett.101.065701
    [27] JENSEN B J, CHERNE F J, VELISAVLJEVIC N. Dynamic experiments to study the α-ε phase transition in cerium [J]. Journal of Applied Physics, 2020, 127(9): 095901. doi: 10.1063/1.5142508
    [28] PAVLOVSKII M N, KOMISSAROV V V, KUTSAR A R. Isomorphic γα phase transition of cerium under shock compression [J]. Combustion, Explosion and Shock Waves, 1999, 35(1): 88–91. doi: 10.1007/BF02674392
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  123
  • PDF下载量:  47
出版历程
  • 收稿日期:  2022-06-11
  • 修回日期:  2022-08-16
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回