扰动作用下爆轰形成机理

张静雯 彭澳 陈先锋 孙绪绪

张静雯, 彭澳, 陈先锋, 孙绪绪. 扰动作用下爆轰形成机理[J]. 高压物理学报, 2022, 36(6): 062303. doi: 10.11858/gywlxb.20220600
引用本文: 张静雯, 彭澳, 陈先锋, 孙绪绪. 扰动作用下爆轰形成机理[J]. 高压物理学报, 2022, 36(6): 062303. doi: 10.11858/gywlxb.20220600
ZHANG Jingwen, PENG Ao, CHEN Xianfeng, SUN Xuxu. Mechanisms of Detonation Initiation under the Effect of Perturbation[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062303. doi: 10.11858/gywlxb.20220600
Citation: ZHANG Jingwen, PENG Ao, CHEN Xianfeng, SUN Xuxu. Mechanisms of Detonation Initiation under the Effect of Perturbation[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062303. doi: 10.11858/gywlxb.20220600

扰动作用下爆轰形成机理

doi: 10.11858/gywlxb.20220600
基金项目: 国家重点研发计划(2021YFB4000901);中央高校基础研究项目(223161001);中国民航大学民航热灾害防控应急重点实验室开放基金(RZH2021-KF-05);中国科学技术大学火灾科学国家重点实验室开放基金(HZ2022-KF09)
详细信息
    作者简介:

    张静雯(1997-),女,硕士研究生,主要从事火焰加速研究. E-mail:303372@whut.edu.cn

    通讯作者:

    孙绪绪(1994-),男,博士,副研究员,主要从事气相爆轰传播动力学研究.E-mail:xuxusun@whut.edu.cn

  • 中图分类号: O381

Mechanisms of Detonation Initiation under the Effect of Perturbation

  • 摘要: 为详细研究扰动作用下爆轰触发机理,在内径为90 mm的圆管内用阻塞比为0.923的孔板使稳定爆轰完全失效,然后在孔板下游0.5 m处安装一个由直径为2 mm的圆柱杆构成的小型障碍物,用以研究人为添加的小扰动对不稳定爆轰触发的影响。通过改变小型圆柱杆的数量(1、2、3),得到了3种不同类型的小扰动,其阻塞比分别为0.03、0.04和0.07。采用PCB压力传感器记录爆轰波的到达时间,以获得爆轰平均传播速度,同时采用烟熏板技术记录爆轰胞格结构。实验结果表明:小扰动可显著促进爆轰起爆,爆轰触发临界压力从光滑管道内的37 kPa降低到25 kPa;小扰动还增强了波阵面的不稳定性,诱导形成局部爆炸点,这是导致爆轰触发的重要原因;在极限条件下,爆轰触发条件可近似量化为DH/λ>1(DH为水力直径,λ为爆轰胞格尺寸)。采用忽略黏性的二维欧拉方程作为控制方程,两步诱导反应速率模型描述化学反应过程,模拟研究了扰动波长和振幅对爆轰触发的影响。数值模拟结果表明,低振幅、高频率的扰动可诱导产生更多的横波增强波阵面的不稳定性,有助于爆轰触发。

     

  • 图  实验装置示意图

    Figure  1.  Schematic diagram of experimental apparatus

    图  计算区域示意图(在当量比为1的氢气-氧气混合物中引入振幅为A、波长为η的扰动)

    Figure  2.  Schematic of calculation zone (A disturbance with the amplitude of A and wavelength of η is introduced to stoichiometric hydrogen-oxygen mixture.)

    图  平均传播速度与初始压力之间的关系曲线

    Figure  3.  Average velocity as a function of initial pressure

    图  临界条件下典型爆轰胞格结构记录

    Figure  4.  Typical detonation cellular patterns at the critical condition

    图  圆柱横截面示意图

    Figure  5.  Schematic diagram of the cross-section of the cylindrical obstacle

    图  A=2.5、η=2时不同计算精度下的密度场和胞格结构

    Figure  6.  Density field and cellular structure for A=2.5, η=2 in the cases of different resolutions

    图  不同工况下爆轰触发所需时间

    Figure  7.  Detonation initiation time in the cases of different wavelengths and amplitudes

    图  A=2.5工况下数值模拟得到的纹影结果

    Figure  8.  Schlieren results in the simulation for the cases of A=2.5

    图  η=15工况下数值模拟得到的纹影结果

    Figure  9.  Schlieren results in the simulation for the cases of η=15

    表  1  爆轰触发实验结果

    Table  1.   Experimental result of detonation initiation

    Number of cylindrical obstaclesCritical pressure/kPaCell size/mmDH/mmDH/λ
    0374.4290.0020.36
    1284.9053.4213.70
    2284.9046.839.56
    3255.2033.816.50
    下载: 导出CSV
  • [1] RAINSFORD G, AULAKH D J S, CICCARELLI G. Visualization of detonation propagation in a round tube equipped with repeating orifice plates [J]. Combustion and Flame, 2018, 198: 205–221. doi: 10.1016/j.combustflame.2018.09.015
    [2] 李红宾, 李建玲, 熊姹, 等. 超音速来流中爆轰波衍射和二次起爆过程研究 [J]. 爆炸与冲击, 2019, 39(4): 041401. doi: 10.11883/bzycj-2018-0464

    LI H B, LI J L, XIONG C, et al. Numerical investigation on detonation diffraction and re-initiationprocesses in a supersonic inflow [J]. Explosion and Shock Waves, 2019, 39(4): 041401. doi: 10.11883/bzycj-2018-0464
    [3] 孙晓晖, 陈志华, 张焕好. 激波绕射碰撞加速诱导爆轰的数值模拟 [J]. 爆炸与冲击, 2011, 31(4): 407–412. doi: 10.11883/1001-1455(2011)04-0407-06

    SUN X H, CHEN Z H, ZHANG H H. Numerical investigations on detonation initiation accelerated by collision of diffracted shock waves [J]. Explosion and Shock Waves, 2011, 31(4): 407–412. doi: 10.11883/1001-1455(2011)04-0407-06
    [4] 赵永耀. 可燃气体火焰加速及爆燃转爆轰的机理研究 [D]. 北京: 北京理工大学, 2017.

    ZHAO Y Y. Investigation on the mechanism of flame acceleration and deflagration to detonation transition of combustible gases [D]. Beijing: Beijing Institute of Technology, 2017.
    [5] 张博, 白春华. 气相爆轰动力学 [M]. 北京: 科学出版社, 2012.
    [6] 白春华, 梁慧敏, 李建平, 等. 云雾爆轰 [M]. 北京: 科学出版社, 2012.
    [7] 张宝平, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2006.
    [8] NG H D, LEE J H S. Direct initiation of detonation with a multi-step reaction scheme [J]. Journal of Fluid Mechanics, 2003, 476: 179–211. doi: 10.1017/S0022112002002872
    [9] ZHANG B, KAMENSKIHS V, NG H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2265–2271. doi: 10.1016/j.proci.2010.06.165
    [10] KAMENSKIHS V, NG H D, LEE J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures [J]. Combustion and Flame, 2010, 157(9): 1795–1799. doi: 10.1016/j.combustflame.2010.02.014
    [11] ECKETT C A, QUIRK J J, SHEPHERD J E. The role of unsteadiness in direct initiation of gaseous detonations [J]. Journal of Fluid Mechanics, 2000, 421: 147–183. doi: 10.1017/S0022112000001555
    [12] GAMEZO V N, OGAWA T, ORAN E S. Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing [J]. Combustion and Flame, 2008, 155(1/2): 302–315. doi: 10.1016/j.combustflame.2008.06.004
    [13] SIVASHINSKY G I. Some developments in premixed combustion modeling [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1737–1761. doi: 10.1016/S1540-7489(02)80213-9
    [14] DOROFEEV S B. Flame acceleration and explosion safety applications [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2161–2175. doi: 10.1016/j.proci.2010.09.008
    [15] ORAN E S, GAMEZO V N. Origins of the deflagration-to-detonation transition in gas-phase combustion [J]. Combustion and Flame, 2007, 148(1/2): 4–47. doi: 10.1016/j.combustflame.2006.07.010
    [16] CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499–550. doi: 10.1016/j.pecs.2007.11.002
    [17] ORAN E S. Understanding explosions-from catastrophic accidents to creation of the universe [J]. Proceedings of the Combustion Institute, 2015, 35(1): 1–35. doi: 10.1016/j.proci.2014.08.019
    [18] NG H D, KIYANDA C B, MORGAN G H, et al. The influence of high-frequency instabilities on the direct initiation of two-dimensional gaseous detonations [C]//Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems. Leeds, UK: ICDERS, 2015.
    [19] CHUE R S, LEE J H, ZHANG F. Transition from fast deflagration to detonation under the influence of periodic longitudinal perturbations [J]. Shock Waves, 1995, 5(3): 159–167. doi: 10.1007/BF01435523
    [20] MAZAHERI BODY K. Mechanism of the onset of detonation in blast initiation [D]. Montreal: McGill University, 1997.
    [21] NG H D, LEE J H S. The influence of local disturbances on the direct initiation of detonations [C]//Proceedings of the 18th International Colloquium on the Dynamics of Explosion and Reactive Systems. Seattle, USA: ICDERS, 2001.
    [22] QI C K, CHEN Z. Effects of temperature perturbation on direct detonation initiation [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2743–2751. doi: 10.1016/j.proci.2016.06.093
    [23] RADULESCU M I, SHARPE G J, LAW C K. Effect of cellular instabilities on the blast initiation of weakly unstable detonations [C]//Proceedings of the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems. Poitiers: ICDERS, 2007.
    [24] WANG Y, HAN W, DEITERDING R, et al. Effects of disturbance on detonation initiation in H2/O2/N2 mixture [J]. Physical Review Fluids, 2018, 3(12): 123201. doi: 10.1103/physrevfluids.3.123201
    [25] XIAO H H, ORAN E S. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes [J]. Combustion and Flame, 2020, 220: 378–393. doi: 10.1016/j.combustflame.2020.07.013
    [26] XIAO H H, ORAN E S. Shock focusing and detonation initiation at a flame front [J]. Combustion and Flame, 2019, 203: 397–406. doi: 10.1016/j.combustflame.2019.02.012
    [27] SUN X X, LI Q, LU S X. The propagation mechanism of detonation wave in a round tube filled with larger blockage ratio orifice plates [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7684–7691. doi: 10.1016/j.ijhydene.2019.01.139
    [28] NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. doi: 10.1080/13647830500307758
    [29] MI X C, HIGGINS A J, NG H D, et al. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium [J]. Physical Review Fluids, 2017, 2(5): 053201. doi: 10.1103/PhysRevFluids.2.053201
    [30] XU H, MI X C, KIYANDA C B, et al. The role of cellular instability on the critical tube diameter problem for unstable gaseous detonations [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3545–3553. doi: 10.1016/j.proci.2018.05.133
    [31] LEE J H S. On the critical tube diameter. Dynamics of exothermicity [M]. Gordon and Breech Publishers, Netherlands, 1996: 321−336.
    [32] CICCARELLI G, BOCCIO J L. Detonation wave propagation through a single orifice plate in a circular tube [J]. Symposium (International) on Combustion, 1998, 27(2): 2233–2239. doi: 10.1016/S0082-0784(98)80072-6
    [33] GAO Y, NG H D, LEE J H S. Minimum tube diameters for steady propagation of gaseous detonations [J]. Shock Waves, 2014, 24(4): 447–500. doi: 10.1007/s00193-014-0505-8
    [34] MOEN I O, SULMISTRAS A, THOMS G O, et al. Influence of cellular regularity on the behaviorof gaseous detonations [M]//LEYER J C, SOLOUKHIN R I, BOWEN J R. Dynamics of Explosions. Reston: AIAA, 1986: 220−243.
    [35] ZHANG B, LIU H. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture [J]. Combustion and Flame, 2017, 182: 279–287. doi: 10.1016/j.combustflame.2017.04.025
    [36] WANG L Q, MA H H, SHEN Z W, et al. Effects of bluff bodies on the propagation behaviors of gaseous detonation [J]. Combustion and Flame, 2019, 201: 118–128. doi: 10.1016/j.combustflame.2018.12.018
    [37] PERALDI O, KNYSTAUTAS R, LEE J H. Criteria for transition to detonation in tubes [J]. Symposium (International) on Combustion, 1988, 21(1): 1629–1637. doi: 10.1016/S0082-0784(88)80396-5
    [38] CROSS M, CICCARELLI G. DDT and detonation propagation limits in an obstacle filled tube [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 380–386. doi: 10.1016/j.jlp.2014.11.020
    [39] KNYSTAUTAS R, LEE J H, PERALDI O, et al. Transmission of a flame from a rough to a smooth-walled tube [M]//LEYER J C, SOLOUKHIN R I, BOWEN J R. Dynamics of Explosions. Reston: AIAA, 1986: 37−52.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  152
  • PDF下载量:  49
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-11-12
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回