Mechanisms of Detonation Initiation under the Effect of Perturbation
-
摘要: 为详细研究扰动作用下爆轰触发机理,在内径为90 mm的圆管内用阻塞比为0.923的孔板使稳定爆轰完全失效,然后在孔板下游0.5 m处安装一个由直径为2 mm的圆柱杆构成的小型障碍物,用以研究人为添加的小扰动对不稳定爆轰触发的影响。通过改变小型圆柱杆的数量(1、2、3),得到了3种不同类型的小扰动,其阻塞比分别为0.03、0.04和0.07。采用PCB压力传感器记录爆轰波的到达时间,以获得爆轰平均传播速度,同时采用烟熏板技术记录爆轰胞格结构。实验结果表明:小扰动可显著促进爆轰起爆,爆轰触发临界压力从光滑管道内的37 kPa降低到25 kPa;小扰动还增强了波阵面的不稳定性,诱导形成局部爆炸点,这是导致爆轰触发的重要原因;在极限条件下,爆轰触发条件可近似量化为DH/λ>1(DH为水力直径,λ为爆轰胞格尺寸)。采用忽略黏性的二维欧拉方程作为控制方程,两步诱导反应速率模型描述化学反应过程,模拟研究了扰动波长和振幅对爆轰触发的影响。数值模拟结果表明,低振幅、高频率的扰动可诱导产生更多的横波增强波阵面的不稳定性,有助于爆轰触发。Abstract: This paper aims to experimentally and numerically investigate the effect of perturbation on the detonation initiation. In a round tube with 90 mm inner diameter, a stable detonation is firstly failed by an orifice plate with the blockage ratio of 0.923, and then the small-scale perturbation created by a cylindrical obstacle with a 2 mm diameter is introduced to a position 0.5 m downstream of the orifice plate to study the role of the perturbation on detonation re-initiation. Three different obstacles with blockage ratio of 0.03, 0.04 and 0.07 can be obtained by changing the number of the cylindrical obstacles equal to 1, 2 and 3. PCB gauges are used to record the time-of-arrival of the detonation, from which the detonation speed can be calculated. The smoked foil technique is used to record the cellular structures. The experimental results indicate that the small-scale perturbation can significantly facilitate the detonation initiation, and the critical pressure can be decreased from 37 kPa to 25 kPa in the smooth tube. By analyzing the cellular structures, it can be found that the perturbation can enhance the cellular instability inducing the local explosion centers, which is the main reason causing the detonation initiation. Near the limit, the detonation initiation mechanism can be approximately quantified as DH/λ>1, where DH is hydraulic diameter and λ represents the cell size. In the simulation, the reactive Euler equations are used as the governing equations and two-step induction-reaction rate law is considered. The numerical results indicate that the disturbance with lower wavelength and amplitude can induce more transverse waves and enhance the cellular instabilities, facilitating the detonation initiation.
-
Key words:
- perturbation /
- detonation initiation /
- instability /
- amplitude /
- wavelength
-
表 1 爆轰触发实验结果
Table 1. Experimental result of detonation initiation
Number of cylindrical obstacles Critical pressure/kPa Cell size/mm DH/mm DH/λ 0 37 4.42 90.00 20.36 1 28 4.90 53.42 13.70 2 28 4.90 46.83 9.56 3 25 5.20 33.81 6.50 -
[1] RAINSFORD G, AULAKH D J S, CICCARELLI G. Visualization of detonation propagation in a round tube equipped with repeating orifice plates [J]. Combustion and Flame, 2018, 198: 205–221. doi: 10.1016/j.combustflame.2018.09.015 [2] 李红宾, 李建玲, 熊姹, 等. 超音速来流中爆轰波衍射和二次起爆过程研究 [J]. 爆炸与冲击, 2019, 39(4): 041401. doi: 10.11883/bzycj-2018-0464LI H B, LI J L, XIONG C, et al. Numerical investigation on detonation diffraction and re-initiationprocesses in a supersonic inflow [J]. Explosion and Shock Waves, 2019, 39(4): 041401. doi: 10.11883/bzycj-2018-0464 [3] 孙晓晖, 陈志华, 张焕好. 激波绕射碰撞加速诱导爆轰的数值模拟 [J]. 爆炸与冲击, 2011, 31(4): 407–412. doi: 10.11883/1001-1455(2011)04-0407-06SUN X H, CHEN Z H, ZHANG H H. Numerical investigations on detonation initiation accelerated by collision of diffracted shock waves [J]. Explosion and Shock Waves, 2011, 31(4): 407–412. doi: 10.11883/1001-1455(2011)04-0407-06 [4] 赵永耀. 可燃气体火焰加速及爆燃转爆轰的机理研究 [D]. 北京: 北京理工大学, 2017.ZHAO Y Y. Investigation on the mechanism of flame acceleration and deflagration to detonation transition of combustible gases [D]. Beijing: Beijing Institute of Technology, 2017. [5] 张博, 白春华. 气相爆轰动力学 [M]. 北京: 科学出版社, 2012. [6] 白春华, 梁慧敏, 李建平, 等. 云雾爆轰 [M]. 北京: 科学出版社, 2012. [7] 张宝平, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2006. [8] NG H D, LEE J H S. Direct initiation of detonation with a multi-step reaction scheme [J]. Journal of Fluid Mechanics, 2003, 476: 179–211. doi: 10.1017/S0022112002002872 [9] ZHANG B, KAMENSKIHS V, NG H D, et al. Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2265–2271. doi: 10.1016/j.proci.2010.06.165 [10] KAMENSKIHS V, NG H D, LEE J H S. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures [J]. Combustion and Flame, 2010, 157(9): 1795–1799. doi: 10.1016/j.combustflame.2010.02.014 [11] ECKETT C A, QUIRK J J, SHEPHERD J E. The role of unsteadiness in direct initiation of gaseous detonations [J]. Journal of Fluid Mechanics, 2000, 421: 147–183. doi: 10.1017/S0022112000001555 [12] GAMEZO V N, OGAWA T, ORAN E S. Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing [J]. Combustion and Flame, 2008, 155(1/2): 302–315. doi: 10.1016/j.combustflame.2008.06.004 [13] SIVASHINSKY G I. Some developments in premixed combustion modeling [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1737–1761. doi: 10.1016/S1540-7489(02)80213-9 [14] DOROFEEV S B. Flame acceleration and explosion safety applications [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2161–2175. doi: 10.1016/j.proci.2010.09.008 [15] ORAN E S, GAMEZO V N. Origins of the deflagration-to-detonation transition in gas-phase combustion [J]. Combustion and Flame, 2007, 148(1/2): 4–47. doi: 10.1016/j.combustflame.2006.07.010 [16] CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499–550. doi: 10.1016/j.pecs.2007.11.002 [17] ORAN E S. Understanding explosions-from catastrophic accidents to creation of the universe [J]. Proceedings of the Combustion Institute, 2015, 35(1): 1–35. doi: 10.1016/j.proci.2014.08.019 [18] NG H D, KIYANDA C B, MORGAN G H, et al. The influence of high-frequency instabilities on the direct initiation of two-dimensional gaseous detonations [C]//Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems. Leeds, UK: ICDERS, 2015. [19] CHUE R S, LEE J H, ZHANG F. Transition from fast deflagration to detonation under the influence of periodic longitudinal perturbations [J]. Shock Waves, 1995, 5(3): 159–167. doi: 10.1007/BF01435523 [20] MAZAHERI BODY K. Mechanism of the onset of detonation in blast initiation [D]. Montreal: McGill University, 1997. [21] NG H D, LEE J H S. The influence of local disturbances on the direct initiation of detonations [C]//Proceedings of the 18th International Colloquium on the Dynamics of Explosion and Reactive Systems. Seattle, USA: ICDERS, 2001. [22] QI C K, CHEN Z. Effects of temperature perturbation on direct detonation initiation [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2743–2751. doi: 10.1016/j.proci.2016.06.093 [23] RADULESCU M I, SHARPE G J, LAW C K. Effect of cellular instabilities on the blast initiation of weakly unstable detonations [C]//Proceedings of the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems. Poitiers: ICDERS, 2007. [24] WANG Y, HAN W, DEITERDING R, et al. Effects of disturbance on detonation initiation in H2/O2/N2 mixture [J]. Physical Review Fluids, 2018, 3(12): 123201. doi: 10.1103/physrevfluids.3.123201 [25] XIAO H H, ORAN E S. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes [J]. Combustion and Flame, 2020, 220: 378–393. doi: 10.1016/j.combustflame.2020.07.013 [26] XIAO H H, ORAN E S. Shock focusing and detonation initiation at a flame front [J]. Combustion and Flame, 2019, 203: 397–406. doi: 10.1016/j.combustflame.2019.02.012 [27] SUN X X, LI Q, LU S X. The propagation mechanism of detonation wave in a round tube filled with larger blockage ratio orifice plates [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7684–7691. doi: 10.1016/j.ijhydene.2019.01.139 [28] NG H D, RADULESCU M I, HIGGINS A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics [J]. Combustion Theory and Modelling, 2005, 9(3): 385–401. doi: 10.1080/13647830500307758 [29] MI X C, HIGGINS A J, NG H D, et al. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium [J]. Physical Review Fluids, 2017, 2(5): 053201. doi: 10.1103/PhysRevFluids.2.053201 [30] XU H, MI X C, KIYANDA C B, et al. The role of cellular instability on the critical tube diameter problem for unstable gaseous detonations [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3545–3553. doi: 10.1016/j.proci.2018.05.133 [31] LEE J H S. On the critical tube diameter. Dynamics of exothermicity [M]. Gordon and Breech Publishers, Netherlands, 1996: 321−336. [32] CICCARELLI G, BOCCIO J L. Detonation wave propagation through a single orifice plate in a circular tube [J]. Symposium (International) on Combustion, 1998, 27(2): 2233–2239. doi: 10.1016/S0082-0784(98)80072-6 [33] GAO Y, NG H D, LEE J H S. Minimum tube diameters for steady propagation of gaseous detonations [J]. Shock Waves, 2014, 24(4): 447–500. doi: 10.1007/s00193-014-0505-8 [34] MOEN I O, SULMISTRAS A, THOMS G O, et al. Influence of cellular regularity on the behaviorof gaseous detonations [M]//LEYER J C, SOLOUKHIN R I, BOWEN J R. Dynamics of Explosions. Reston: AIAA, 1986: 220−243. [35] ZHANG B, LIU H. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture [J]. Combustion and Flame, 2017, 182: 279–287. doi: 10.1016/j.combustflame.2017.04.025 [36] WANG L Q, MA H H, SHEN Z W, et al. Effects of bluff bodies on the propagation behaviors of gaseous detonation [J]. Combustion and Flame, 2019, 201: 118–128. doi: 10.1016/j.combustflame.2018.12.018 [37] PERALDI O, KNYSTAUTAS R, LEE J H. Criteria for transition to detonation in tubes [J]. Symposium (International) on Combustion, 1988, 21(1): 1629–1637. doi: 10.1016/S0082-0784(88)80396-5 [38] CROSS M, CICCARELLI G. DDT and detonation propagation limits in an obstacle filled tube [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 380–386. doi: 10.1016/j.jlp.2014.11.020 [39] KNYSTAUTAS R, LEE J H, PERALDI O, et al. Transmission of a flame from a rough to a smooth-walled tube [M]//LEYER J C, SOLOUKHIN R I, BOWEN J R. Dynamics of Explosions. Reston: AIAA, 1986: 37−52.