Blasting Damage and Energy Characteristics of Rock Mass under High in-Situ Stress
-
摘要: 在深层岩体地下工程中,岩体的爆破效果与地应力密切相关。基于岩体-空气流固耦合模型,采用理论分析与LS-DYNA有限元数值模拟相结合的方式,研究了不同地应力和侧压系数条件下岩体爆破损伤效果以及岩体非弹性边界处能量及质点峰值振动速度阈值的变化规律。结果表明:岩体的损伤范围和裂纹扩展在一定程度上受到地应力的抑制作用,地应力越大,损伤范围和裂纹长度越小;不同地应力下,非弹性区与弹性区边界处的能量差随侧压系数的增大而减小,当侧压系数一定时,能量随地应力的增大而增大;高地应力状态下,利用质点峰值振动速度阈值判据进行岩体爆破安全控制是不可靠的。Abstract: In blasting excavation of deep rock mass engineering, the blasting effect is closely related to ground stress. Based on the rock mass-air fluid-solid coupling model, the blasting damage effect of rock mass under different in-situ stress and lateral pressure coefficient, and the variation rule of energy and peak particle velocity (PPV) threshold at inelastic boundary of rock mass were studied by combining theoretical analysis and LS-DYNA finite element numerical simulation. The results show that the damage range and crack propagation of rock mass are restrained by in-situ stress to a certain extent. The larger the in-situ stress is, the smaller the damage range and crack length will be. Under different ground stresses, the energy difference between the inelastic zone and the elastic zone decreases with the increase of the lateral pressure coefficient. When the lateral pressure coefficient is constant, the energy increases with the increase of ground stress. Under the condition of high in-situ stress, it is inaccurate to use the PPV threshold to determine the safety control of rock blasting.
-
Key words:
- in-situ stress /
- peak particle velocity /
- fluid-structure interaction /
- blasting effect /
- damage area
-
表 1 岩石模型材料参数
Table 1. Rock material parameters in model
$\,\rho /( { {\text{g} } \cdot {\text{c} }{ {\text{m} }{^{ - 3} } } } )$ ${E{_0}}/{\text{GPa} }$ $\,\mu$ $\sigma /{\text{GPa} }$ ${E{_{\tan } } }/{\rm {GPa} }$ $\,\beta_{\rm r}$ 2.7 6.2 0.22 0.5 0.02 0.6 表 2 炸药的力学参数
Table 2. Mechanical parameters of explosive
${\,\rho {_0} }$/(g·cm−3) D/(m·s−1) ${p{_{\max } }}$/GPa A/GPa B/GPa ${R{_1}}$ ${R{_2}}$ $ \omega $ ${e{_0} }/{\rm {GPa}}$ 1.18 5122 9.53 276.2 8.44 5.2 2.1 0.5 3.87 表 3 工况参数
Table 3. Parameters of working conditions
Case No. $ \xi $ ${\sigma {_x}}$/MPa ${\sigma {_y}}$/MPa Case No. $ \xi $ ${\sigma {_x}}$/MPa ${\sigma {_y}}$/MPa 1 0 0 0 8 2 45 22.5 2 1 15 15.0 9 2 60 30.0 3 1 30 30.0 10 3 15 5.0 4 1 45 45.0 11 3 30 10.0 5 1 60 60.0 12 3 45 15.0 6 2 15 7.5 13 3 60 20.0 7 2 30 15.0 -
[1] BHANDARI S. On the role of stress waves and quasi-static gas pressure in rock fragmentation by blasting [J]. Acta Astronautica, 1979, 6(3/4): 365–383. doi: 10.1016/0094-5765(79)90104-8 [2] PAINE A S, PLEASE C P. An improved model of fracture propagation by gas during rock blasting: some analytical results [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 699–706. doi: 10.1016/0148-9062(94)90009-4 [3] 刘殿书, 王万富, 杨吕俊, 等. 初始应力条件下爆破机理的动光弹实验研究 [J]. 煤炭学报, 1999, 24(6): 612–614. doi: 10.3321/j.issn:0253-9993.1999.06.012LIU D S, WANG W F, YANG L J, et al. Holophotoelasticity study on mechanism of blasting under initiative stress field [J]. Journal of China Coal Society, 1999, 24(6): 612–614. doi: 10.3321/j.issn:0253-9993.1999.06.012 [4] 肖正学, 张志呈, 李端明. 初始应力场对爆破效果的影响 [J]. 煤炭学报, 1996, 21(5): 497–501. doi: 10.13225/j.cnki.jccs.1996.05.011XIAO Z X, ZHANG Z C, LI D M. The influence of initial stress field on blasting [J]. Journal of China Coal Society, 1996, 21(5): 497–501. doi: 10.13225/j.cnki.jccs.1996.05.011 [5] 肖正学, 张志呈, 郭学彬. 断裂控制爆破裂纹发展规律的研究 [J]. 岩石力学与工程学报, 2002, 21(4): 546–549. doi: 10.3321/j.issn:1000-6915.2002.04.019XIAO Z X, ZHANG Z C, GUO X B. Research on crack developing law of rock fracture controlled blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 546–549. doi: 10.3321/j.issn:1000-6915.2002.04.019 [6] 陈明, 卢文波, 周创兵, 等. 初始地应力对隧洞开挖爆生裂隙区的影响研究 [J]. 岩土力学, 2009, 30(8): 2254–2258. doi: 10.3969/j.issn.1000-7598.2009.08.009CHEN M, LU W B, ZHOU C B, et al. Influence of initial in-situ stress on blasting-induced cracking zone in tunnel excavation [J]. Rock and Soil Mechanics, 2009, 30(8): 2254–2258. doi: 10.3969/j.issn.1000-7598.2009.08.009 [7] 戴俊. 深埋岩石隧洞的周边控制爆破方法与参数确定 [J]. 爆炸与冲击, 2004, 24(6): 493–498. doi: 10.3321/j.issn:1001-1455.2004.06.003DAI J. The controlled contour blasting technique and its parameter determination for rock tunnel at depth [J]. Explosion and Shock Waves, 2004, 24(6): 493–498. doi: 10.3321/j.issn:1001-1455.2004.06.003 [8] 王长柏, 李海波, 谢冰, 等. 岩体爆破裂纹扩展影响因素分析 [J]. 煤炭科学技术, 2010, 38(10): 31–34, 61. doi: 10.13199/j.cst.2010.10.38.wangzhb.036WANG C B, LI H B, XIE B, et al. Analysis on influencing factors of blasting crack expansion [J]. Coal Science and Technology, 2010, 38(10): 31–34, 61. doi: 10.13199/j.cst.2010.10.38.wangzhb.036 [9] 高全臣, 赫建明, 冯贵文, 等. 高应力岩巷的控制爆破机理与技术 [J]. 爆破, 2003, 20(Suppl 1): 52–55.GAO Q C, HE J M, FENG G W, et al. Mechanism and technology of controlled blasting for high stress rock tunneling [J]. Blasting, 2003, 20(Suppl 1): 52–55. [10] DALLY J W, FOURNEY W L, HOLLOWAY D C. Influence of containment of the bore hole pressures on explosive induced fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(1): 5–12. doi: 10.1016/0148-9062(75)90737-8 [11] 穆朝民, 潘飞. 煤体在爆炸荷载和地应力耦合作用下裂纹扩展的数值模拟 [J]. 高压物理学报, 2013, 27(3): 403–410. doi: 10.11858/gywlxb.2013.03.014MU C M, PAN F. Numerical study on the damage of the coal under blasting loads coupled with geostatic stress [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 403–410. doi: 10.11858/gywlxb.2013.03.014 [12] 朱万成, 左宇军, 尚世明, 等. 动态扰动触发深部巷道发生失稳破裂的数值模拟 [J]. 岩石力学与工程学报, 2007, 26(5): 915–921. doi: 10.3321/j.issn:1000-6915.2007.05.007ZHU W C, ZUO Y J, SHANG S M, et al. Numerical simulation of instable failure of deep rock tunnel triggered by dynamic disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 915–921. doi: 10.3321/j.issn:1000-6915.2007.05.007 [13] 杨栋, 李海波, 夏祥, 等. 高地应力条件下爆破开挖诱发围岩损伤的特性研究 [J]. 岩土力学, 2014, 35(4): 1110–1116, 1122. doi: 10.16285/j.rsm.2014.04.012YANG D, LI H B, XIA X, et al. Study of blasting-induced dynamic damage of tunnel surrounding rocks under high in-situ stress [J]. Rock and Soil Mechanics, 2014, 35(4): 1110–1116, 1122. doi: 10.16285/j.rsm.2014.04.012 [14] 李新平, 陈俊桦, 李友华, 等. 溪洛渡电站地下洞室群爆破地震效应的研究 [J]. 岩石力学与工程学报, 2010, 29(3): 493–501.LI X P, CHEN J H, LI Y H, et al. Study of blasting seismic effects of underground chamber group in Xiluodu hydropower station [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 493–501. [15] 刘艳, 许金余. 地应力场下岩体爆体的数值模拟 [J]. 岩土力学, 2007(11): 2485–2488. doi: 10.16285/j.rsm.2007.11.042LIU Y, XU J Y. Numerical simulation of rock mass explosion under in-situ stress field [J]. Geotechnical Mechanics, 2007(11): 2485–2488. doi: 10.16285/j.rsm.2007.11.042 [16] 李真珍, 于建新, 杨小林, 等. 深部煤层水压爆破裂纹扩展规律 [J]. 高压物理学报, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912LI Z Z, YU J X, YANG X L, et al. Crack propagation regularity of hydraulic blasting in deep coal seam [J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912 [17] 王文龙. 钻眼爆破 [M]. 北京: 煤炭工业出版社, 1984.WANG W L. Drilling and blasting [M]. Beijing: China Coal Industry Publishing House, 1984. [18] 杨善元. 岩石爆破动力学基础 [M]. 北京: 煤炭工业出版社, 1993.YANG S Y. The foundation of rock blasting dynamics [M]. Beijing: China Coal Industry Publishing House, 1993. [19] 冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. doi: 10.11883/1001-1455(2015)01-0101-07LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. doi: 10.11883/1001-1455(2015)01-0101-07 [20] 戴俊. 岩石动力学特性与爆破理论 [M]. 2版. 北京: 冶金工业出版社, 2013.DAI J. Dynamic behaviors and blasting theory of rock [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2013. [21] 李洪超, 刘殿书, 赵磊, 等. 大理岩RHT模型参数确定研究 [J]. 北京理工大学学报, 2017, 37(8): 801–806. doi: 10.15918/j.tbit1001-0645.2017.08.006LI H C, LIU D S, ZHAO L, et al. Study on parameter determination of marble RHT model [J]. Journal of Beijing Institute of Technology, 2017, 37(8): 801–806. doi: 10.15918/j.tbit1001-0645.2017.08.006 [22] SIERRA C, TSENG E, JAIN A, et al. Cornering stiffness estimation based on vehicle lateral dynamics [J]. Vehicle System Dynamics, 2006, 44(Suppl 1): 24–38. doi: 10.1080/00423110600867259 [23] 钮强. 岩石爆破机理 [M]. 北京: 中国建筑工业出版社, 1992.NIU Q. Rock blasting mechanism [M]. Beijing: China Architecture & Building Press, 1992. [24] LU W B, CHEN M, GENG X, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations [J]. Tunnelling and Underground Space Technology, 2012, 29: 31–39. doi: 10.1016/j.tust.2011.12.008 [25] 李芳涛, 胡志平, 陈南南, 等. 爆破荷载作用下隧道围岩裂隙范围计算方法研究 [J]. 振动与冲击, 2022, 41(8): 260–269. doi: 10.13465/j.cnki.jvs.2022.08.032LI F T, HU Z P, CHEN N N, et al. A study of fracture range of tunnel surrounding rock under blasting [J]. Journal of Vibration and Shock, 2022, 41(8): 260–269. doi: 10.13465/j.cnki.jvs.2022.08.032 [26] SANCHIDRIÁN J A, SEGARRA P, LÓPEZ L M. Energy components in rock blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 130–147. doi: 10.1016/j.ijrmms.2006.05.002 [27] WAN D Y, ZHU Z M, LIU R F, et al. Measuring method of dynamic fracture toughness of mode Ⅰ crack under blasting using a rectangle specimen with a crack and edge notches [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104104. doi: 10.1016/j.ijrmms.2019.104104 [28] YUE Z W, QIU P, YANG R S, et al. Stress analysis of the interaction of a running crack and blasting waves by caustics method [J]. Engineering Fracture Mechanics, 2017, 184: 339–351. doi: 10.1016/j.engfracmech.2017.08.037 [29] 杨建华, 吴泽南, 姚池, 等. 地下洞室爆破开挖诱发围岩损伤特性及PPV阈值研究 [J]. 振动与冲击, 2019, 38(2): 131–139. doi: 10.13465/j.cnki.jvs.2019.02.020YANG J H, WU Z N, YAO C, et al. Characteristics and PPV thresholds of rock damages under underground blasting excavation [J]. Journal of Vibration and Shock, 2019, 38(2): 131–139. doi: 10.13465/j.cnki.jvs.2019.02.020