高地应力下岩体的爆破损伤及能量特性

梁瑞 李生荣 包娟 周文海

梁瑞, 李生荣, 包娟, 周文海. 高地应力下岩体的爆破损伤及能量特性[J]. 高压物理学报, 2022, 36(6): 064202. doi: 10.11858/gywlxb.20220599
引用本文: 梁瑞, 李生荣, 包娟, 周文海. 高地应力下岩体的爆破损伤及能量特性[J]. 高压物理学报, 2022, 36(6): 064202. doi: 10.11858/gywlxb.20220599
LIANG Rui, LI Shengrong, BAO Juan, ZHOU Wenhai. Blasting Damage and Energy Characteristics of Rock Mass under High in-Situ Stress[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064202. doi: 10.11858/gywlxb.20220599
Citation: LIANG Rui, LI Shengrong, BAO Juan, ZHOU Wenhai. Blasting Damage and Energy Characteristics of Rock Mass under High in-Situ Stress[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064202. doi: 10.11858/gywlxb.20220599

高地应力下岩体的爆破损伤及能量特性

doi: 10.11858/gywlxb.20220599
基金项目: 国家自然科学基金(51566010);甘肃省自然科学基金(B061709)
详细信息
    作者简介:

    梁 瑞(1968—),男,博士,教授,主要从事安全工程与工程爆破研究. E-mail:liangr@lut.edu.cn

  • 中图分类号: O346; TU45

Blasting Damage and Energy Characteristics of Rock Mass under High in-Situ Stress

  • 摘要: 在深层岩体地下工程中,岩体的爆破效果与地应力密切相关。基于岩体-空气流固耦合模型,采用理论分析与LS-DYNA有限元数值模拟相结合的方式,研究了不同地应力和侧压系数条件下岩体爆破损伤效果以及岩体非弹性边界处能量及质点峰值振动速度阈值的变化规律。结果表明:岩体的损伤范围和裂纹扩展在一定程度上受到地应力的抑制作用,地应力越大,损伤范围和裂纹长度越小;不同地应力下,非弹性区与弹性区边界处的能量差随侧压系数的增大而减小,当侧压系数一定时,能量随地应力的增大而增大;高地应力状态下,利用质点峰值振动速度阈值判据进行岩体爆破安全控制是不可靠的。

     

  • 图  深部岩体的受力示意图

    Figure  1.  Schematic diagram of stress of rock mass

    图  t=2 ms时无地应力岩体爆破损伤区域示意图

    Figure  2.  Schematic diagram of blasting damage area of rock mass without in-situ stress at t=2 ms

    图  不同地应力下岩体的损伤云图

    Figure  3.  Damage cloud map of rock mass under different in-situ stresses

    图  岩体损伤半径

    Figure  4.  Damage radius of rock mass

    图  地震波能量时程曲线

    Figure  5.  Time history of seismic wave energy

    图  监测单元示意图

    Figure  6.  Schematic diagram of monitoring unit

    图  损伤度与爆心距的关系

    Figure  7.  Relationship between damage degree and the distance to the blast center

    图  PPV随爆心距的衰减曲线

    Figure  8.  PPV decay curve with distance to the blast center

    图  不同地应力下损伤度与PPV的关系

    Figure  9.  Relationship between damage degree and PPV under different in-situ stresses

    图  10  岩体的PPV阈值及损伤度变化率

    Figure  10.  PPV threshold and damage change rate of rock mass

    表  1  岩石模型材料参数

    Table  1.   Rock material parameters in model

    $\,\rho /( { {\text{g} } \cdot {\text{c} }{ {\text{m} }{^{ - 3} } } } )$${E{_0}}/{\text{GPa} }$$\,\mu$$\sigma /{\text{GPa} }$${E{_{\tan } } }/{\rm {GPa} }$$\,\beta_{\rm r}$
    2.76.20.220.50.020.6
    下载: 导出CSV

    表  2  炸药的力学参数

    Table  2.   Mechanical parameters of explosive

    ${\,\rho {_0} }$/(g·cm−3)D/(m·s−1)${p{_{\max } }}$/GPaA/GPaB/GPa${R{_1}}$${R{_2}}$$ \omega $${e{_0} }/{\rm {GPa}}$
    1.1851229.53276.28.445.22.10.53.87
    下载: 导出CSV

    表  3  工况参数

    Table  3.   Parameters of working conditions

    Case No.$ \xi $${\sigma {_x}}$/MPa${\sigma {_y}}$/MPa Case No.$ \xi $${\sigma {_x}}$/MPa${\sigma {_y}}$/MPa
    1000 824522.5
    211515.0926030.0
    313030.0103155.0
    414545.01133010.0
    516060.01234515.0
    62157.51336020.0
    723015.0
    下载: 导出CSV
  • [1] BHANDARI S. On the role of stress waves and quasi-static gas pressure in rock fragmentation by blasting [J]. Acta Astronautica, 1979, 6(3/4): 365–383. doi: 10.1016/0094-5765(79)90104-8
    [2] PAINE A S, PLEASE C P. An improved model of fracture propagation by gas during rock blasting: some analytical results [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 699–706. doi: 10.1016/0148-9062(94)90009-4
    [3] 刘殿书, 王万富, 杨吕俊, 等. 初始应力条件下爆破机理的动光弹实验研究 [J]. 煤炭学报, 1999, 24(6): 612–614. doi: 10.3321/j.issn:0253-9993.1999.06.012

    LIU D S, WANG W F, YANG L J, et al. Holophotoelasticity study on mechanism of blasting under initiative stress field [J]. Journal of China Coal Society, 1999, 24(6): 612–614. doi: 10.3321/j.issn:0253-9993.1999.06.012
    [4] 肖正学, 张志呈, 李端明. 初始应力场对爆破效果的影响 [J]. 煤炭学报, 1996, 21(5): 497–501. doi: 10.13225/j.cnki.jccs.1996.05.011

    XIAO Z X, ZHANG Z C, LI D M. The influence of initial stress field on blasting [J]. Journal of China Coal Society, 1996, 21(5): 497–501. doi: 10.13225/j.cnki.jccs.1996.05.011
    [5] 肖正学, 张志呈, 郭学彬. 断裂控制爆破裂纹发展规律的研究 [J]. 岩石力学与工程学报, 2002, 21(4): 546–549. doi: 10.3321/j.issn:1000-6915.2002.04.019

    XIAO Z X, ZHANG Z C, GUO X B. Research on crack developing law of rock fracture controlled blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 546–549. doi: 10.3321/j.issn:1000-6915.2002.04.019
    [6] 陈明, 卢文波, 周创兵, 等. 初始地应力对隧洞开挖爆生裂隙区的影响研究 [J]. 岩土力学, 2009, 30(8): 2254–2258. doi: 10.3969/j.issn.1000-7598.2009.08.009

    CHEN M, LU W B, ZHOU C B, et al. Influence of initial in-situ stress on blasting-induced cracking zone in tunnel excavation [J]. Rock and Soil Mechanics, 2009, 30(8): 2254–2258. doi: 10.3969/j.issn.1000-7598.2009.08.009
    [7] 戴俊. 深埋岩石隧洞的周边控制爆破方法与参数确定 [J]. 爆炸与冲击, 2004, 24(6): 493–498. doi: 10.3321/j.issn:1001-1455.2004.06.003

    DAI J. The controlled contour blasting technique and its parameter determination for rock tunnel at depth [J]. Explosion and Shock Waves, 2004, 24(6): 493–498. doi: 10.3321/j.issn:1001-1455.2004.06.003
    [8] 王长柏, 李海波, 谢冰, 等. 岩体爆破裂纹扩展影响因素分析 [J]. 煤炭科学技术, 2010, 38(10): 31–34, 61. doi: 10.13199/j.cst.2010.10.38.wangzhb.036

    WANG C B, LI H B, XIE B, et al. Analysis on influencing factors of blasting crack expansion [J]. Coal Science and Technology, 2010, 38(10): 31–34, 61. doi: 10.13199/j.cst.2010.10.38.wangzhb.036
    [9] 高全臣, 赫建明, 冯贵文, 等. 高应力岩巷的控制爆破机理与技术 [J]. 爆破, 2003, 20(Suppl 1): 52–55.

    GAO Q C, HE J M, FENG G W, et al. Mechanism and technology of controlled blasting for high stress rock tunneling [J]. Blasting, 2003, 20(Suppl 1): 52–55.
    [10] DALLY J W, FOURNEY W L, HOLLOWAY D C. Influence of containment of the bore hole pressures on explosive induced fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(1): 5–12. doi: 10.1016/0148-9062(75)90737-8
    [11] 穆朝民, 潘飞. 煤体在爆炸荷载和地应力耦合作用下裂纹扩展的数值模拟 [J]. 高压物理学报, 2013, 27(3): 403–410. doi: 10.11858/gywlxb.2013.03.014

    MU C M, PAN F. Numerical study on the damage of the coal under blasting loads coupled with geostatic stress [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 403–410. doi: 10.11858/gywlxb.2013.03.014
    [12] 朱万成, 左宇军, 尚世明, 等. 动态扰动触发深部巷道发生失稳破裂的数值模拟 [J]. 岩石力学与工程学报, 2007, 26(5): 915–921. doi: 10.3321/j.issn:1000-6915.2007.05.007

    ZHU W C, ZUO Y J, SHANG S M, et al. Numerical simulation of instable failure of deep rock tunnel triggered by dynamic disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 915–921. doi: 10.3321/j.issn:1000-6915.2007.05.007
    [13] 杨栋, 李海波, 夏祥, 等. 高地应力条件下爆破开挖诱发围岩损伤的特性研究 [J]. 岩土力学, 2014, 35(4): 1110–1116, 1122. doi: 10.16285/j.rsm.2014.04.012

    YANG D, LI H B, XIA X, et al. Study of blasting-induced dynamic damage of tunnel surrounding rocks under high in-situ stress [J]. Rock and Soil Mechanics, 2014, 35(4): 1110–1116, 1122. doi: 10.16285/j.rsm.2014.04.012
    [14] 李新平, 陈俊桦, 李友华, 等. 溪洛渡电站地下洞室群爆破地震效应的研究 [J]. 岩石力学与工程学报, 2010, 29(3): 493–501.

    LI X P, CHEN J H, LI Y H, et al. Study of blasting seismic effects of underground chamber group in Xiluodu hydropower station [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 493–501.
    [15] 刘艳, 许金余. 地应力场下岩体爆体的数值模拟 [J]. 岩土力学, 2007(11): 2485–2488. doi: 10.16285/j.rsm.2007.11.042

    LIU Y, XU J Y. Numerical simulation of rock mass explosion under in-situ stress field [J]. Geotechnical Mechanics, 2007(11): 2485–2488. doi: 10.16285/j.rsm.2007.11.042
    [16] 李真珍, 于建新, 杨小林, 等. 深部煤层水压爆破裂纹扩展规律 [J]. 高压物理学报, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912

    LI Z Z, YU J X, YANG X L, et al. Crack propagation regularity of hydraulic blasting in deep coal seam [J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912
    [17] 王文龙. 钻眼爆破 [M]. 北京: 煤炭工业出版社, 1984.

    WANG W L. Drilling and blasting [M]. Beijing: China Coal Industry Publishing House, 1984.
    [18] 杨善元. 岩石爆破动力学基础 [M]. 北京: 煤炭工业出版社, 1993.

    YANG S Y. The foundation of rock blasting dynamics [M]. Beijing: China Coal Industry Publishing House, 1993.
    [19] 冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. doi: 10.11883/1001-1455(2015)01-0101-07

    LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. doi: 10.11883/1001-1455(2015)01-0101-07
    [20] 戴俊. 岩石动力学特性与爆破理论 [M]. 2版. 北京: 冶金工业出版社, 2013.

    DAI J. Dynamic behaviors and blasting theory of rock [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2013.
    [21] 李洪超, 刘殿书, 赵磊, 等. 大理岩RHT模型参数确定研究 [J]. 北京理工大学学报, 2017, 37(8): 801–806. doi: 10.15918/j.tbit1001-0645.2017.08.006

    LI H C, LIU D S, ZHAO L, et al. Study on parameter determination of marble RHT model [J]. Journal of Beijing Institute of Technology, 2017, 37(8): 801–806. doi: 10.15918/j.tbit1001-0645.2017.08.006
    [22] SIERRA C, TSENG E, JAIN A, et al. Cornering stiffness estimation based on vehicle lateral dynamics [J]. Vehicle System Dynamics, 2006, 44(Suppl 1): 24–38. doi: 10.1080/00423110600867259
    [23] 钮强. 岩石爆破机理 [M]. 北京: 中国建筑工业出版社, 1992.

    NIU Q. Rock blasting mechanism [M]. Beijing: China Architecture & Building Press, 1992.
    [24] LU W B, CHEN M, GENG X, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations [J]. Tunnelling and Underground Space Technology, 2012, 29: 31–39. doi: 10.1016/j.tust.2011.12.008
    [25] 李芳涛, 胡志平, 陈南南, 等. 爆破荷载作用下隧道围岩裂隙范围计算方法研究 [J]. 振动与冲击, 2022, 41(8): 260–269. doi: 10.13465/j.cnki.jvs.2022.08.032

    LI F T, HU Z P, CHEN N N, et al. A study of fracture range of tunnel surrounding rock under blasting [J]. Journal of Vibration and Shock, 2022, 41(8): 260–269. doi: 10.13465/j.cnki.jvs.2022.08.032
    [26] SANCHIDRIÁN J A, SEGARRA P, LÓPEZ L M. Energy components in rock blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 130–147. doi: 10.1016/j.ijrmms.2006.05.002
    [27] WAN D Y, ZHU Z M, LIU R F, et al. Measuring method of dynamic fracture toughness of mode Ⅰ crack under blasting using a rectangle specimen with a crack and edge notches [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104104. doi: 10.1016/j.ijrmms.2019.104104
    [28] YUE Z W, QIU P, YANG R S, et al. Stress analysis of the interaction of a running crack and blasting waves by caustics method [J]. Engineering Fracture Mechanics, 2017, 184: 339–351. doi: 10.1016/j.engfracmech.2017.08.037
    [29] 杨建华, 吴泽南, 姚池, 等. 地下洞室爆破开挖诱发围岩损伤特性及PPV阈值研究 [J]. 振动与冲击, 2019, 38(2): 131–139. doi: 10.13465/j.cnki.jvs.2019.02.020

    YANG J H, WU Z N, YAO C, et al. Characteristics and PPV thresholds of rock damages under underground blasting excavation [J]. Journal of Vibration and Shock, 2019, 38(2): 131–139. doi: 10.13465/j.cnki.jvs.2019.02.020
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  140
  • PDF下载量:  54
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-11-15
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回