复合地层下穿高铁矩形顶管盾构隧道的施工稳定性

宁茂权 晋学辉 刘朝钦 麻建飞 崔光耀

宁茂权, 晋学辉, 刘朝钦, 麻建飞, 崔光耀. 复合地层下穿高铁矩形顶管盾构隧道的施工稳定性[J]. 高压物理学报, 2022, 36(6): 065301. doi: 10.11858/gywlxb.20220592
引用本文: 宁茂权, 晋学辉, 刘朝钦, 麻建飞, 崔光耀. 复合地层下穿高铁矩形顶管盾构隧道的施工稳定性[J]. 高压物理学报, 2022, 36(6): 065301. doi: 10.11858/gywlxb.20220592
NING Maoquan, JIN Xuehui, LIU Chaoqin, MA Jianfei, CUI Guangyao. Construction Stability of Rectangular Pipe Jacking Shield Tunnel Crossing High-Speed Railway in Composite Stratum[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065301. doi: 10.11858/gywlxb.20220592
Citation: NING Maoquan, JIN Xuehui, LIU Chaoqin, MA Jianfei, CUI Guangyao. Construction Stability of Rectangular Pipe Jacking Shield Tunnel Crossing High-Speed Railway in Composite Stratum[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065301. doi: 10.11858/gywlxb.20220592

复合地层下穿高铁矩形顶管盾构隧道的施工稳定性

doi: 10.11858/gywlxb.20220592
基金项目: 国家自然科学基金(52178378);中铁第四勘察设计院集团有限公司科技研究开发项目(2020K143)
详细信息
    作者简介:

    宁茂权(1972-),男,硕士,高级工程师,主要从事隧道与地下工程的勘察设计研究.E-mail:ninmquan12@126.com

    通讯作者:

    崔光耀(1983-),男,博士,教授,主要从事隧道与地下工程研究. E-mail:cyao456@163.com

  • 中图分类号: O342; U45

Construction Stability of Rectangular Pipe Jacking Shield Tunnel Crossing High-Speed Railway in Composite Stratum

  • 摘要: 为保证矩形顶管盾构隧道下穿高铁近接施工的稳定性,以某火车站东侧地下通道工程为例,采用ABAQUS有限元分析软件建立了复合地层下穿高铁矩形顶管盾构隧道近接施工的精细化计算模型,分析了硬岩比、埋深因子和管节因子对复合地层顶管盾构隧道近接下穿施工时地表位移、轨道变形、管节收敛和安全系数的影响。结果表明:随着复合地层硬岩比的增加、埋深因子的减小和管节因子的增加,矩形顶管盾构隧道施工时的地层位移极值、地表沉降、上覆高铁轨道变形和管节收敛逐渐减小,管节安全系数逐渐增加,复合地层矩形顶管盾构隧道的施工稳定性提升。研究结果可为类似工程施工提供参考。

     

  • 图  矩形地下通道与高铁的位置关系

    Figure  1.  Location relationship between rectangular underpass and high-speed railway

    图  复合地层

    Figure  2.  Composite stratum

    图  计算模型

    Figure  3.  Numerical model

    图  监测系统

    Figure  4.  Monitoring system

    图  矩形顶管盾构在不同硬岩比复合地层中顶进后的位移云图

    Figure  5.  Displacement nephogram of rectangular pipe jacking shield after jacking in composite strata with different hard rock ratios

    图  地表中心点沉降、轨道变形和管节的位移收敛曲线

    Figure  6.  Settlement at the center of the surface, track deformation and segment convergence

    图  轨道的应力-距离曲线

    Figure  7.  Stress-distance curves of track

    图  管节安全系数

    Figure  8.  Safety factor of segments

    图  埋深因子ζC的影响

    Figure  9.  Influence of buried depth factor ζC

    图  10  不同ζC下轨道的应力-距离曲线

    Figure  10.  Stress-distance curves of track with different ζC

    图  11  管节因子ζd的影响

    Figure  11.  Influence of segment factor ζd

    图  12  不同ζd下轨道的应力曲线

    Figure  12.  Stress curves of strack with different ζd

    表  1  计算工况

    Table  1.   Calculation cases

    Influence factorValue of influence factorImpact factorValue of impact factor
    Burial depthC0=4.2 mζC= C/C01.00,1.50,2.00
    Hard rock ratioh0=7.65 mn= h/h00,0.25,0.50,0.75,1.00
    Length of pipe jointd0=1.8 mζd= d/d01.00,2.00,3.00
    下载: 导出CSV

    表  2  计算参数

    Table  2.   Calculation parameters

    StructureDensity/(kg·m−3)Elastic modulus/MPaPoisson’s ratioInternal friction angle/(°)Cohesion/MPa
    Soft rock18602100.37180.0005
    Hard rock250060000.25451
    Track78002.06×1050.23
    Ballast25001300.35
    Segment25003.45×1040.25
    Sleeper24503.15×1040.20
    Foundation23002.80×1040.33
    下载: 导出CSV
  • [1] 田四明, 王伟, 杨昌宇, 等. 中国铁路隧道40年发展与展望 [J]. 隧道建设, 2021, 41(11): 1903–1930. doi: 10.3973/j.issn.2096-4498.2021.11.007

    TIAN S M, WANG W, YANG C Y, et al. Development and prospect of railway tunnels in China in recent 40 years [J]. Tunnel Construction, 2021, 41(11): 1903–1930. doi: 10.3973/j.issn.2096-4498.2021.11.007
    [2] 魏纲, 赵得乾麟, 黄睿. 盾构施工对邻近隧道影响的模型试验研究综述 [J]. 现代隧道技术, 2021, 58(5): 1–8. doi: 10.13807/j.cnki.mtt.2021.05.001

    WEI G, ZHAO D Q L, HUANG R. A review of model test studies on the impact of shield construction on adjacent tunnels [J]. Modern Tunnelling Technology, 2021, 58(5): 1–8. doi: 10.13807/j.cnki.mtt.2021.05.001
    [3] SENENT S, JIMENEZ R. A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse [J]. Tunnelling and Underground Space Technology, 2015, 47: 182–192. doi: 10.1016/j.tust.2014.12.014
    [4] ZHANG C P, HAN K H, ZHANG D L. Face stability analysis of shallow circular tunnels in cohesive-frictional soils [J]. Tunnelling and Underground Space Technology, 2015, 50: 345–357. doi: 10.1016/j.tust.2015.08.007
    [5] 陈家康, 刘陕南, 肖晓春, 等. 复合地层中超大直径泥水盾构施工开挖面泥水压力确定方法研究 [J]. 隧道建设, 2018, 38(4): 619–626. doi: 10.3973/j.issn.2096-4498.2018.04.013

    CHEN J K, LIU S N, XIAO X C, et al. Study of determination method for slurry pressure on excavation face of super-large slurry shield tunnel in composite ground [J]. Tunnel Construction, 2018, 38(4): 619–626. doi: 10.3973/j.issn.2096-4498.2018.04.013
    [6] 柳献, 叶宇航, 刘震, 等. 连接螺栓对类矩形盾构隧道结构极限承载力影响的试验研究与分析 [J]. 土木工程学报, 2018, 51(8): 81–88. doi: 10.15951/j.tmgcxb.2018.08.009

    LIU X, YE Y H, LIU Z, et al. Experimental investigation and analysis on effect of connecting bolts on ultimate bearing capacity of quasi-rectangular shield tunnel [J]. China Civil Engineering Journal, 2018, 51(8): 81–88. doi: 10.15951/j.tmgcxb.2018.08.009
    [7] ZHANG W X, DE CORTE W, LIU X, et al. Optimization study on longitudinal joints in quasi-rectangular shield tunnels [J]. Applied Sciences, 2021, 11(2): 573. doi: 10.3390/app11020573
    [8] PHAM V V, DO N A, DIAS D. Sub-rectangular tunnel behavior under seismic loading [J]. Applied Sciences, 2021, 11(21): 9909. doi: 10.3390/app11219909
    [9] 李培楠, 石来, 刘俊, 等. 软土地区类矩形盾构隧道同步注浆填充扩散压力空间分布模式 [J]. 中国铁道科学, 2021, 42(2): 77–87. doi: 10.3969/j.issn.1001-4632.2021.02.09

    LI P N, SHI L, LIU J, et al. Spatial distribution mode of diffusion pressure of synchronous grouting filling for quasi-rectangular shield tunnel in soft soil area [J]. China Railway Science, 2021, 42(2): 77–87. doi: 10.3969/j.issn.1001-4632.2021.02.09
    [10] DUAN C, DING W Q, ZHAO T C, et al. Brief introduction of synchronous grouting model test based on quasi-rectangular shield tunnel [C]//Transportation Research Congress, 2018: 640−647.
    [11] 司金标, 朱瑶宏, 季昌, 等. 软土层中类矩形盾构掘进施工引起地层竖向变形实测与分析 [J]. 岩石力学与工程学报, 2017, 36(6): 1551–1559. doi: 10.13722/j.cnki.jrme.2016.0963

    SI J B, ZHU Y H, JI C, et al. Measurement and analysis of vertical deformation of stratum induced by quasi-rectangular shield tunneling in soft ground [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1551–1559. doi: 10.13722/j.cnki.jrme.2016.0963
    [12] 张雪辉, 陈吉祥, 白云, 等. 类矩形土压平衡盾构施工引起的地表变形 [J]. 浙江大学学报(工学版), 2018, 52(2): 317–324. doi: 10.3785/j.issn.1008-973X.2018.02.014

    ZHANG X H, CHEN J X, BAI Y, et al. Ground surface deformation induced by quasi-rectangle EPB shield tunneling [J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 317–324. doi: 10.3785/j.issn.1008-973X.2018.02.014
    [13] 贾远航. 矩形顶管隧道施工对地层及邻近地下管线的影响研究 [D]. 石家庄: 石家庄铁道大学, 2020.

    JIA Y H. Study on the influence of rectangular pipe jacking tunnel construction on stratum and adjacent underground pipeline [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020.
    [14] ZHANG Z G, ZHANG M X, ZHAO Q H, et al. Interaction analyses between existing pipeline and quasi-rectangular tunneling in clays [J]. KSCE Journal of Civil Engineering, 2021, 25(1): 326–344. doi: 10.1007/s12205-020-2366-2
    [15] 中华人民共和国交通运输部. 公路隧道设计规范 第一册 土建工程: JTG 3370.1—2018 [S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People’s Republic of China. Specifications for design of highway tunnels section 1 civil engineering: JTG 3370.1—2018 [S]. Beijing: China Communications Press, 2019.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  184
  • PDF下载量:  27
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-06-11
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回