Numerical Analysis of Dynamic Mechanical Characteristics of Brazilian Splitting of Coal-Rock Combination Bodies
-
摘要: 为探究冲击荷载条件下煤岩组合工程体的动力学响应特征,通过室内试验测得单一煤、岩的基本力学参数,为煤、岩体HJC模型材料参数的选取提供依据。在材料模型有效性验证的基础上,采用LS-DYNA显式动力学软件研究了不同冲击荷载、冲击方向及加载角度条件下煤岩组合体动态劈裂过程中的应力波传播规律、变形破坏过程及破坏特征。结果表明:(1) 在不同冲击方向作用下,R-C与C-R组合体的应力波波形基本相同,但应力幅值略有差异,对比发现入射波幅值基本相等,但R-C组合体的反射波幅值偏大,透射波应力幅值偏小,随着冲击荷载的增大,差异性逐渐减小;(2) 在不同冲击荷载作用下,煤岩组合体在劈裂过程中以煤体部分破坏为主,且组合体中煤体部分总是在交界面远处先产生宏观裂隙,而岩体部分则多在交界面近处先起裂破坏;(3) 当冲击荷载较小时,C-R与R-C组合体的破坏形态基本相同,以拉伸、剪切破坏为主,随着冲击荷载的增大,组合体的破坏程度加剧,破坏形态的差异性也更明显;(4) 提出了一种以单元损伤失效数量为评价指标的方法来定量分析组合体的破碎程度,从数据的变化规律发现,组合体在加载角度为45°时破坏最剧烈。Abstract: In order to investigate the dynamic mechanical characteristics of coal-rock composite engineering body under impact load, the basic mechanical parameters of pure coal and pure rock were obtained by laboratory tests for determining the parameters of HJC model. Based on the validity verification of the material model, LS-DYNA was employed to study the stress wave propagation features, failure process and failure characteristics of coal-rock combination bodies in dynamic splitting process considering the effects of impact loads, impact directions and loading angles. The results showed that: (1) the stress wave shapes of R-C and C-R samples are almost the same for different impact directions, but the stress amplitudes are slightly different. The comparison results showed that the incident wave amplitudes are similar, but for R-C samples, the amplitude of reflected wave is larger while that is smaller of transmitted wave. The difference gradually decreases with the increasing impact loads. (2) Under the action of different impact loads, the coal part is mainly damaged in the process of splitting, and the cracks generally appear in the coal part far from the interface, while the rock part commonly is damaged at the near side of the interface. (3) The failure modes of C-R and R-C samples are similar and mainly tensile and shear when the impact load is relatively low. The damage degree of the combination body is aggravated with increasing load, and the difference of failure modes becomes more obvious. (4) A method using the number of failure elements as an evaluation index is proposed to quantitatively analyze the breakage degree of the combination bodies. According to the numerical simulation results, the combination body damaged most seriously for the loading angle of 45°.
-
Key words:
- coal-rock combination body /
- dynamic splitting /
- HJC model /
- failure characteristics /
- failure process
-
表 1 煤的HJC模型参数
Table 1. Parameters of HJC model for coal
ρ/(kg·m–3) G/GPa fc/MPa A B C N Smax D1 D2 1594 0.58 9.0 0.400 0.700 0.005 0.500 7.000 0.031 1.00 T/MPa pc/MPa μc/10–3 pl/GPa μl K1/GPa K2/GPa K3/GPa $ \dot \varepsilon $0/s−1 ${\varepsilon \rm_{f,\min } }$ 1.86 3.0 0.8 1.0 0.121 81 −170 208 1.00 0.005 表 2 岩的HJC模型参数
Table 2. Parameters of HJC model for rock
ρ/(kg·m–3) G/GPa fc/MPa A B C N Smax D1 D2 2670 10.8 135 0.762 1.65 0.009 0.74 4.00 0.045 1.00 T/MPa pc/MPa μc/10–3 pl/GPa μl K1/GPa K2/GPa K3/GPa $ \dot \varepsilon $0/s−1 ${\varepsilon \rm_{f,min } }$ 7.48 45.27 2.9 1.0 0.101 85 −150 208 1.00 0.005 -
[1] 谢和平. 深部岩体力学与开采理论研究进展 [J]. 煤炭学报, 2019, 44(5): 1283–1305. doi: 10.13225/j.cnki.jccs.2019.6038XIE H P. Research review of the state key research development program of China: deep rock mechanics and mining theory [J]. Journal of China Coal Society, 2019, 44(5): 1283–1305. doi: 10.13225/j.cnki.jccs.2019.6038 [2] CHEN Y L, ZUO J P, LIU D J, et al. Deformation failure characteristics of coal-rock combined body under uniaxial compression: experimental and numerical investigations [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3449–3464. doi: 10.1007/s10064-018-1336-0 [3] LI W F, BAI J B, CHENG J Y, et al. Determination of coal-rock interface strength by laboratory direct shear tests under constant normal load [J]. International Journal of Rock Mechanics and Mining Science, 2015, 77: 60–67. doi: 10.1016/j.ijrmms.2015.03.033 [4] 左建平, 谢和平, 吴爱民, 等. 深部煤岩单体及组合体的破坏机制与力学特性研究 [J]. 岩石力学与工程学报, 2011, 30(1): 84–92.ZUO J P, XIE H P, WU A M, et al. Investigation on failure mechanisms and mechanical behaviors of deep coal-rock single body and combined body [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 84–92. [5] 苗磊刚, 牛园园, 石必明. 不同应变率下岩-煤-岩组合体冲击动力试验研究 [J]. 振动与冲击, 2019, 38(17): 137–143. doi: 10.13465/j.cnki.jvs.2019.17.018MIAO L G, NIU Y Y, SHI B M. Impact dynamic tests for rock-coal-rock combination under different strain rates [J]. Journal of Vibration and Shock, 2019, 38(17): 137–143. doi: 10.13465/j.cnki.jvs.2019.17.018 [6] LIU X S, TAN Y L, NING J G, et al. Mechanical properties and damage constitutive model of coal in coal-rock combined body [J]. International Journal of Rock Mechanics and Mining Science, 2018, 110: 140–150. doi: 10.1016/j.ijrmms.2018.07.020 [7] 张泽天, 刘建锋, 王璐, 等. 组合方式对煤岩组合体力学特性和破坏特征影响的试验研究 [J]. 煤炭学报, 2012, 37(10): 1677–1681. doi: 10.13225/j.cnki.jccs.2012.10.021ZHANG Z T, LIU J F, WANG L, et al. Effects of combination mode on mechanical properties and failure characteristics of the coal-rock combinations [J]. Journal of China Coal Society, 2012, 37(10): 1677–1681. doi: 10.13225/j.cnki.jccs.2012.10.021 [8] 曹吉胜, 戴前伟, 周岩, 等. 考虑界面倾角及分形特性的组合煤岩体强度及破坏机制分析 [J]. 中南大学学报(自然科学版), 2018, 49(1): 175–182. doi: 10.11817/j.issn.1672-7207.2018.01.023CAO J S, DAI Q W, ZHOU Y, et al. Failure mechanism and strength of coal-rock combination bodies considering dip angles and fractal characteristics of interface [J]. Journal of Central South University (Science and Technology), 2018, 49(1): 175–182. doi: 10.11817/j.issn.1672-7207.2018.01.023 [9] 郭东明, 左建平, 张毅, 等. 不同倾角组合煤岩体的强度与破坏机制研究 [J]. 岩土力学, 2011, 32(5): 1333–1339. doi: 10.3969/j.issn.1000-7598.2011.05.009GUO D M, ZUO J P, ZHANG Y, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles [J]. Rock and Soil Mechanics, 2011, 32(5): 1333–1339. doi: 10.3969/j.issn.1000-7598.2011.05.009 [10] 付斌, 周宗红, 王友新, 等. 煤岩组合体破坏过程RFPA2D数值模拟 [J]. 大连理工大学学报, 2016, 56(2): 132–139. doi: 10.7511/dllgxb201602004FU B, ZHOU Z H, WANG Y X, et al. Numerical simulation of coal-rock combination body failure process by RFPA2D [J]. Journal of Dalian University of Technology, 2016, 56(2): 132–139. doi: 10.7511/dllgxb201602004 [11] 陈光波, 李谭, 杨磊, 等. 不同煤岩比例及组合方式的组合体力学特性及破坏机制 [J]. 采矿与岩层控制工程学报, 2021, 3(2): 84–94.CHEN G B, LI T, YANG L, et al. Mechanical properties and failure mechanism of combined bodies with different coal-rock ratios and combinations [J]. Journal of Mining and Strata Control Engineering, 2021, 3(2): 84–94. [12] 肖晓春, 樊玉峰, 吴迪, 等. 组合煤岩破坏过程能量耗散特征及冲击危险评价 [J]. 岩土力学, 2019, 40(11): 4203–4212. doi: 10.16285/j.rsm.2018.1925XIAO X C, FAN Y F, WU D, et al. Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203–4212. doi: 10.16285/j.rsm.2018.1925 [13] 解北京, 严正. 基于层叠模型组合煤岩体动态力学本构模型 [J]. 煤炭学报, 2019, 44(2): 463–472.XIE B J, YAN Z. Dynamic mechanical constitutive model of combined coal-rock based on overlay model [J]. Journal of China Coal Society, 2019, 44(2): 463–472. [14] 窦林名, 陆菜平, 牟宗龙, 等. 组合煤岩冲击倾向性特性试验研究 [J]. 采矿与安全工程学报, 2006, 23(1): 43–46. doi: 10.3969/j.issn.1673-3363.2006.01.009DOU L M, LU C P, MOU Z L, et al. Rock burst tendency of coal-rock combinations sample [J]. Journal of Mining & Safety Engineering, 2006, 23(1): 43–46. doi: 10.3969/j.issn.1673-3363.2006.01.009 [15] 杨磊, 高富强, 王晓卿. 不同强度比组合煤岩的力学响应与能量分区演化规律 [J]. 岩石力学与工程学报, 2020, 39(Suppl 2): 3297–3305. doi: 10.13722/j.cnki.jrme.2020.0456YANG L, GAO F Q, WANG X Q. Mechanical response and energy partition evolution of coal-rock combinations with different strength ratios [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl 2): 3297–3305. doi: 10.13722/j.cnki.jrme.2020.0456 [16] ZHANG H, LU C P, LIU B, et al. Numerical investigation on crack development and energy evolution of stressed coal-rock combination [J]. International Journal of Rock Mechanics and Mining Science, 2020, 133: 104417. doi: 10.1016/j.ijrmms.2020.104417 [17] LI X B, ZOU Y, ZHOU Z L. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics and Rock Engineering, 2014, 47: 1693–1709. doi: 10.1007/s00603-013-0484-6 [18] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. doi: 10.1016/j.ijimpeng.2016.01.003 [19] 巫绪涛, 孙善飞, 李和平. 用HJC本构模型模拟混凝土SHPB实验 [J]. 爆炸与冲击, 2009, 29(2): 137–142. doi: 10.3321/j.issn:1001-1455.2009.02.005WU X T, SUN S F, LI H P. Numerical simulation of SHPB tests for concrete by using HJC model [J]. Explosion and Shock Waves, 2009, 29(2): 137–142. doi: 10.3321/j.issn:1001-1455.2009.02.005 [20] 陈星明, 刘彤, 肖正学. 混凝土HJC模型抗侵彻参数敏感性数值模拟研究 [J]. 高压物理学报, 2012, 26(3): 313–318. doi: 10.11858/gywlxb.2012.03.011CHEN X M, LIU T, XIAO Z X. Numerical simulation study of parameter sensitivity analysis on concrete HJC model [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 313–318. doi: 10.11858/gywlxb.2012.03.011 [21] 张嘉凡, 高壮, 程树范, 等. 煤岩HJC模型参数确定及液态CO2爆破特性研究 [J]. 岩石力学与工程学报, 2021, 40(Suppl 1): 2633–2642.ZHANG J F, GAO Z, CHENG S F, et al. Parameters determination of coal-rock HJC model and research on blasting characteristics by liquid CO2 [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Suppl 1): 2633–2642. [22] 张若棋, 丁育青, 汤文辉, 等. 混凝土HJC、RHT本构模型的失效强度参数 [J]. 高压物理学报, 2011, 25(1): 15–22. doi: 10.11858/gywlxb.2011.01.003ZHANG R Q, DING Y Q, TANG W H, et al. The failure strength parameters of HJC and RHT concrete constitutive models [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 15–22. doi: 10.11858/gywlxb.2011.01.003 [23] 凌天龙, 吴帅峰, 刘殿书, 等. 砂岩Holmquist-Johnson-Cook模型参数确定 [J]. 煤炭学报, 2018, 43(8): 2211–2216.LING T L, WU S F, LIU D S, et al. Determination of Holmquist-Johnson-Cook model parameters sandstone [J]. Journal of China Coal Society, 2018, 43(8): 2211–2216. [24] 鲜学福, 谭学术. 层状岩体破坏机理 [M]. 重庆: 重庆大学出版社, 1989: 155.XIAN X F, TAN X S. Failure mechanism of layered rock mass [M]. Chongqing: Chongqing University Press, 1989: 155.