高致密ZrB2-ZrC复合材料的高压制备及热烧蚀性能

杨境 赵昊 丁战辉 陈可夫 徐保银 李苗 杜晓波 李永峰 姚斌

杨境, 赵昊, 丁战辉, 陈可夫, 徐保银, 李苗, 杜晓波, 李永峰, 姚斌. 高致密ZrB2-ZrC复合材料的高压制备及热烧蚀性能[J]. 高压物理学报, 2022, 36(4): 043101. doi: 10.11858/gywlxb.20220587
引用本文: 杨境, 赵昊, 丁战辉, 陈可夫, 徐保银, 李苗, 杜晓波, 李永峰, 姚斌. 高致密ZrB2-ZrC复合材料的高压制备及热烧蚀性能[J]. 高压物理学报, 2022, 36(4): 043101. doi: 10.11858/gywlxb.20220587
YANG Jing, ZHAO Hao, DING Zhanhui, CHEN Kefu, XU Baoyin, LI Miao, DU Xiaobo, LI Yongfeng, YAO Bin. High Pressure Preparation and Characterization of High Density ZrB2-ZrC Ultra-High Temperature Ceramic[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043101. doi: 10.11858/gywlxb.20220587
Citation: YANG Jing, ZHAO Hao, DING Zhanhui, CHEN Kefu, XU Baoyin, LI Miao, DU Xiaobo, LI Yongfeng, YAO Bin. High Pressure Preparation and Characterization of High Density ZrB2-ZrC Ultra-High Temperature Ceramic[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043101. doi: 10.11858/gywlxb.20220587

高致密ZrB2-ZrC复合材料的高压制备及热烧蚀性能

doi: 10.11858/gywlxb.20220587
基金项目: 国家自然科学基金(11074093);中南大学轻质高强结构材料重点实验室基金(6142912200201)
详细信息
    作者简介:

    杨 境(1995-),女,硕士研究生,主要从事超高温陶瓷材料研究. E-mail:2815148154@qq.com

    通讯作者:

    丁战辉(1972-),男,博士,教授,主要从事高压材料物理研究. E-mail:dingzh@jlu.edu.cn

  • 中图分类号: O521.2

High Pressure Preparation and Characterization of High Density ZrB2-ZrC Ultra-High Temperature Ceramic

  • 摘要: 超高温陶瓷具有高熔点、高热导率、抗氧化烧蚀等优异性能,是可重复使用的高超声速飞行器防热部件的重要候选材料之一。利用高压技术制备出了高致密超高温陶瓷ZrB2-ZrC复合材料。通过调控合成条件和原料配比,研究了合成压力和烧结助剂ZrC对复合材料抗热烧蚀性能的影响规律。结果表明:在压力3.2 GPa、温度950 ℃的条件下制备出的ZrB2-ZrC复合材料的致密度达到95%以上,该复合材料在1600 ℃烧蚀下的最优质量烧蚀率为17 μg/s,在2000 ℃下的最优质量烧蚀率为30 μg/s;在合成压力为2.9 GPa、温度为950 ℃的条件下,改变烧结助剂ZrC的含量可以影响复合材料的热烧蚀性能。其中,当ZrB2与ZrC的摩尔比为8∶1时,制备的ZrB2-ZrC复合材料经1600 ℃烧蚀后的质量烧蚀率达到最低值(35 μg/s)。

     

  • 图  不同压力下制备的ZrB2-ZrC复合材料样品的XRD谱

    Figure  1.  XRD patterns of the ZrB2-ZrC composites synthesized under different high pressures

    图  不同压力下制备的ZrB2-ZrC复合材料样品表面的SEM图像

    Figure  2.  SEM images of the ZrB2-ZrC composites synthesized under different high pressures

    图  温度950℃、不同压力下合成的ZrB2-ZrC复合材料经1600 ℃烧蚀后样品的XRD谱

    Figure  3.  XRD patterns of ZrB2-ZrC composite samples synthesized under different pressures at 950 ℃ after ablation at 1600 ℃

    图  在2.6 GPa、950 ℃制备的ZrB2-ZrC复合材料经1600 ℃烧蚀后样品表面的SEM图像

    Figure  4.  SEM image of ZrB2-ZrC composite synthesized at 2.6 GPa and 950 ℃ after ablation at 1600 ℃

    图  在3.2 GPa、950 ℃条件下制备的ZrB2-ZrC复合材料的原位高温XRD谱

    Figure  5.  In-situ high temperature XRD patterns of ZrB2-ZrC composite fabricated at 3.2 GPa and 950 °C

    图  采用不同摩尔比的ZrB2和ZrC通过高压合成的复合材料样品的XRD谱

    Figure  6.  XRD patterns of composite samples synthesized with different molar ratios of ZrB2 and ZrC

    图  ZrB2-ZrC复合材料样品的TG-DTA曲线

    Figure  7.  TG-DTA curves of ZrB2-ZrC composites

    图  1600 ℃烧蚀后ZrB2-ZrC复合材料样品截面的SEM图像

    Figure  8.  Cross-sectional SEM images of ZrB2-ZrC composites after ablation at 1600 ℃

    图  ZrB2-ZrC复合材料样品($n_{{\rm{ZrB}}_2} $nZrC=8∶1)经1600 ℃烧蚀后的截面EDS图像

    Figure  9.  EDS images of the cross-sectional sample of ZrB2-ZrC composite ($n_{{\rm{ZrB}}_2} $nZrC=8∶1) after ablation at 1600 ℃

    表  1  不同压力下合成的ZrB2-ZrC复合材料样品经1600和2000 °C烧蚀后的烧蚀率

    Table  1.   Ablation rate of the ZrB2-ZrC composites synthesized at different pressures after ablations at 1600 and 2000 °C

    Synthesis conditionAblation at 1600 ℃ Ablation at 2000 ℃
    Rm/(μg·s−1)Rl/(μm·s−1)Rm/(μg·s−1)Rl/(μm·s−1)
    2.6 GPa, 950 ℃670.17 2304.16
    2.9 GPa, 950 ℃550.152604.60
    3.2 GPa, 950 ℃170.16 306.00
    下载: 导出CSV

    表  2  高压制备的ZrB2-ZrC复合材料样品的致密度及其在1600 °C的烧蚀率

    Table  2.   Density and ablation rate at 1600 °C of ZrB2-ZrC composites prepared at high pressure

    $n{_{{\rm{ZrB}}_2}} $∶nZrCDensity/%Rm/(μg·s−1)Rl/(μm·s−1)
    2∶195.4550.15
    4∶193.8430.19
    8∶195.4350.19
    16∶195.5780.20
    下载: 导出CSV
  • [1] 张幸红, 胡平, 韩杰才, 等. 超高温陶瓷复合材料的研究进展 [J]. 科学通报, 2015, 60(3): 257–266. doi: 10.1360/N972014-00456

    ZHANG X H, HU P, HAN J C, et al. Research progress on ultra-high temperature ceramic composites [J]. Chinese Science Bulletin, 2015, 60(3): 257–266. doi: 10.1360/N972014-00456
    [2] 王在铎, 王惠, 丁楠, 等. 高超声速飞行器技术研究进展 [J]. 科技导报, 2021, 39(11): 59–67. doi: 10.3981/j.issn.1000-7857.2021.11.007

    WANG Z D, WANG H, DING N, et al. Research on the development of hypersonic vehicle technology [J]. Science & Technology Review, 2021, 39(11): 59–67. doi: 10.3981/j.issn.1000-7857.2021.11.007
    [3] 邹冀, 张国军, 傅正义. 超高温陶瓷的无压烧结致密化与微结构调控 [J]. 稀有金属, 2019, 43(11): 1221–1235. doi: 10.13373/j.cnki.cjrm.XY19090011

    ZOU J, ZHANG G J, FU Z Y. Pressureless densification of ultra-high temperature ceramics and microstructure tailoring [J]. Chinese Journal of Rare Metals, 2019, 43(11): 1221–1235. doi: 10.13373/j.cnki.cjrm.XY19090011
    [4] STANFIELD A D, MANARA D, ROBBA D, et al. Measurement of the melting temperature of ZrB2 as determined by laser heating and spectrometric analysis [J]. Journal of the American Ceramic Society, 2021, 104(4): 2780–2787. doi: 10.1111/jace.17634
    [5] ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G. Thermophysical properties of ZrB2 and ZrB2-SiC ceramics [J]. Journal of the American Ceramic Society, 2008, 91(5): 1405–1411. doi: 10.1111/j.1551-2916.2008.02268.x
    [6] LIU L M, HOU Z P, ZHAO Y W, et al. Fabrication of ZrB2 ceramics by reactive hot pressing of ZrB and B [J]. Journal of the American Ceramic Society, 2018, 101(12): 5294–5298. doi: 10.1111/jace.15949
    [7] OKAMOTO N L, KUSAKARI M, TANAKA K, et al. Temperature dependence of thermal expansion and elastic constants of single crystals of ZrB2 and the suitability of ZrB2 as a substrate for GaN film [J]. Journal of Applied Physics, 2003, 93(1): 88–93. doi: 10.1063/1.1525404
    [8] TORABI S, VALEFI Z, EHSANI N. Ablation behavior of SiC/ZrB2 ultra-high temperature ceramic coatings by solid shielding shrouded plasma spray for high-temperature applications (temperature above 2000 °C) [J]. Surface and Coatings Technology, 2020, 403: 126271. doi: 10.1016/j.surfcoat.2020.126271
    [9] SONBER J K, SURI A K. Synthesis and consolidation of zirconium diboride: review [J]. Advances in Applied Ceramics, 2011, 110(6): 321–334. doi: 10.1179/1743676111Y.0000000008
    [10] FAHRENHOLTZ W G, HILMAS G E, ZHANG S C, et al. Pressureless sintering of zirconium diboride: particle size and additive effects [J]. Journal of the American Ceramic Society, 2008, 91(5): 1398–1404. doi: 10.1111/j.1551-2916.2007.02169.x
    [11] ORTIZ A L, ZAMORA V, RODRÍGUEZ-ROJAS F. A study of the oxidation of ZrB2 powders during high-energy ball-milling in air [J]. Ceramics International, 2012, 38: 2857–2863. doi: 10.1016/j.ceramint.2011.11.058
    [12] MEDRI V, MONTEVERDE F, BALBO A, et al. Comparison of ZrB2-ZrC-SiC composites fabricated by spark plasma sintering and hot-pressing [J]. Advanced Engineering Materials, 2005, 7(3): 159–163. doi: 10.1002/adem.200400184
    [13] CHAMBERLAIN A L, FAHRENHOLTZ W G, HILMAS G E. Reactive hot pressing of zirconium diboride [J]. Journal of the European Ceramic Society, 2009, 29(16): 3401–3408. doi: 10.1016/j.jeurceramsoc.2009.07.006
    [14] MONTEVERDE F. Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2 [J]. Applied Physics A, 2006, 82(2): 329–337. doi: 10.1007/s00339-005-3327-9
    [15] SONBER J K, MURTHY T S R C, SUBRAMANIAN C, et al. Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2 [J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(1): 21–30. doi: 10.1016/j.ijrmhm.2010.06.007
    [16] MONTEVERDE F, BELLOSI A. Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2 [J]. Advanced Engineering Materials, 2003, 5(7): 508–512. doi: 10.1002/adem.200300349
    [17] 何慧娟, 闫晓杰, 树学峰, 等. 放电等离子烧结制备ZrB2-SiC超高温陶瓷的力学性能及氧化行为 [J]. 高压物理学报, 2021, 35(2): 024104. doi: 10.11858/gywlxb.20200623

    HE H J, YAN X J, SHU X F, et al. Mechanical properties and oxidation behavior of ZrB2-SiC ultra-high temperature ceramics prepared by spark plasma sintering [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024104. doi: 10.11858/gywlxb.20200623
    [18] INOUE R, ARAI Y, KUBOTA Y. Oxidation behaviors of ZrB2-SiC binary composites above 2000 °C [J]. Ceramics International, 2017, 43(11): 8081–8088. doi: 10.1016/j.ceramint.2017.03.129
    [19] HAN J C, HU P, ZHANG X H, et al. Oxidation-resistant ZrB2-SiC composites at 2200 ℃ [J]. Composites Science and Technology, 2008, 68(3/4): 799–806. doi: 10.1016/j.compscitech.2007.08.017
    [20] 徐强, 邵正山, 朱时珍, 等. ZrB2-ZrC超高温陶瓷激光烧蚀行为研究 [J]. 稀有金属材料与工程, 2015, 44(Suppl 1): 533–536.

    XU Q, SHAO Z S, ZHU S Z, et al. Laser ablation behavior of ZrB2-ZrC ultra high temperature ceramics [J]. Rare Metal Materials and Engineering, 2015, 44(Suppl 1): 533–536.
    [21] AGUIRRE T G, LAMM B W, CRAMER C L, et al. Zirconium-diboride silicon-carbide composites: a review [J]. Ceramics International, 2022, 48(6): 7344–7361. doi: 10.1016/j.ceramint.2021.11.314
    [22] USHAKOV S V, NAVROTSKY A. Experimental approaches to the thermodynamics of ceramics above 1500 °C [J]. Journal of the American Ceramic Society, 2012, 95(5): 1463–1482. doi: 10.1111/j.1551-2916.2012.05102.x
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  123
  • PDF下载量:  41
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-06-06
  • 网络出版日期:  2022-07-16
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回