高能转子轮盘包容机理和包容环结构优化

刘志强 鞠晓蓉 宣海军 陈利强 何泽侃

刘志强, 鞠晓蓉, 宣海军, 陈利强, 何泽侃. 高能转子轮盘包容机理和包容环结构优化[J]. 高压物理学报, 2022, 36(6): 064101. doi: 10.11858/gywlxb.20220584
引用本文: 刘志强, 鞠晓蓉, 宣海军, 陈利强, 何泽侃. 高能转子轮盘包容机理和包容环结构优化[J]. 高压物理学报, 2022, 36(6): 064101. doi: 10.11858/gywlxb.20220584
LIU Zhiqiang, JU Xiaorong, XUAN Haijun, CHEN Liqiang, HE Zekan. Containment Mechanism and Structural Optimization Research for Disk Containment of High-Energy Rotor[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064101. doi: 10.11858/gywlxb.20220584
Citation: LIU Zhiqiang, JU Xiaorong, XUAN Haijun, CHEN Liqiang, HE Zekan. Containment Mechanism and Structural Optimization Research for Disk Containment of High-Energy Rotor[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064101. doi: 10.11858/gywlxb.20220584

高能转子轮盘包容机理和包容环结构优化

doi: 10.11858/gywlxb.20220584
基金项目: 国家科技重大专项(J2019-IV-0019-0087)
详细信息
    作者简介:

    刘志强(1990-),男,硕士,工程师,主要从事航空发动机强度试验研究.E-mail:liuzhiqiang-1990@163.com

    通讯作者:

    宣海军(1977—),男,博士,教授,主要从事高速旋转机械的结构、强度与振动冲击研究.E-mail:marine@zju.edu.cn

  • 中图分类号: O347.3; V231.91

Containment Mechanism and Structural Optimization Research for Disk Containment of High-Energy Rotor

  • 摘要: 为研究高能转子轮盘的包容机理,加工了预制裂纹的试验轮盘,在高速旋转试验台上进行高能转子轮盘的包容性试验,采用非线性显式动力学商用软件对高能转子包容性进行数值仿真。试验结果和仿真分析结果表明,轮盘碎片与包容壳撞击后,撞击区域和边缘材料分别受压缩和剪切作用,如果局部的穿孔失效没有发生,则碎片是否逃逸由壳体材料撞击区和延伸区域的拉伸应变能决定。以某空气涡轮起动机为例,讨论了轮盘包容环厚度与选材,证明了以1.15倍临界包容厚度值作为安全系数确定工程许用包容环厚度的设计方法,通过比较不同材料包容环的包容能力,得出用高极限强度和高延伸率的材料作为包容环材料能够实现明显减重。研究结果对高能转子轮盘的包容结构设计具有指导意义。

     

  • 图  轮盘和机匣示意图

    Figure  1.  Schematic diagram of disk and casing

    图  包容试验装置

    Figure  2.  Equipment of containment test

    图  轮盘包容性试验结果

    Figure  3.  Containment test results of disk

    图  有限元网格单元模型及仿真结果

    Figure  4.  Finite element model and simulation results

    图  轮盘碎片和机匣的能量-时间曲线(机匣壁厚6 mm)

    Figure  5.  Kinetic energy-time history of disk fragments and casing (Casing thickness: 6 mm)

    图  试验件几何模型

    Figure  6.  Test part model

    图  不同壁厚包容环包容性的有限元模拟结果

    Figure  7.  Finite element simulation results with different containment ring thicknesses

    图  转速提高至1.15倍时的有限元模拟结果

    Figure  8.  Finite element simulation results with 1.15 times of the rotational speed

    表  1  试验结果

    Table  1.   Test results

    No.Calculated burst speed/(r·min–1)Test burst speed/(r·min–1)Casing thickness/mmContainment
    1n1
    n1
    0.9852n16No
    20.9896n19Yes
    下载: 导出CSV

    表  2  45钢的材料参数[12]

    Table  2.   Material parameters of 45 steel[12]

    Basic parametersJohnson-Cook plastic constructive parametersJohnson-Cook damage parameters
    E/GPaνρ/(kg·m–3)A/MPaB/MPaCnmD1D2D3D4D5
    2000.307800 5063200.0640.281.060.100.761.570.005−0.84
    下载: 导出CSV

    表  3  3种材料的基本力学性能

    Table  3.   Basic mechanical properties of three kinds of materials

    Materialσb,c/MPaδe/%Density/(g·cm–3)
    1Cr13Ni93013.07.70
    GH4169129923.58.24
    GH62579930.08.40
    下载: 导出CSV
  • [1] MOUSA N A, WHALE M D, GROSZMANN D E, et al. The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris: DOT/FAA/AR-96/95 [R]. Washington DC, USA: US Department of Transportation, Federal Aviation Administration, 1997.
    [2] XUAN H J, LIU L L, FENG Y M, et al. Containment of high-speed rotating disk fragments [J]. Journal of Zhejiang University–Science A, 2012, 13(9): 665−673.
    [3] 宣海军, 何泽侃, 牛丹丹, 等. 航空发动机软壁风扇机匣包容性研究 [J]. 航空发动机, 2015, 41(6): 81–87. doi: 10.13477/j.cnki.aeroengine.2015.06.016

    XUAN H J, HE Z K, NIU D D. Investigation on containment of aeroengine soft-wall fan case [J]. Aeroengine, 2015, 41(6): 81–87. doi: 10.13477/j.cnki.aeroengine.2015.06.016
    [4] NAIK D, SANKARAN S, MOBASHER B, et al. Development of reliable modeling methodologies for fan blade out containment analysis, part Ⅰ: experimental studies [J]. International Journal of Impact Engineering, 2009, 36(1): 1–11. doi: 10.1016/j.ijimpeng.2008.03.007
    [5] STAHLECKER Z, MOBASHER B, RAJAN S D, et al. Development of reliable modeling methodologies for engine fan blade out containment analysis, part Ⅱ: finite element analysis [J]. International Journal of Impact Engineering, 2009, 36(3): 447–459. doi: 10.1016/j.ijimpeng.2008.08.004
    [6] XUAN H J, WU R R. Aero-engine turbine blade containment tests using high-speed rotor spin testing facility [J]. Aerospace Science and Technology, 2006, 10(6): 501–508. doi: 10.1016/j.ast.2006.04.006
    [7] STAMPER E, HALE S. The use of LS-DYNA model to predict containment of disk burst fragments [C]//Proceedings of 10th International LS-DYNA Users Conference. Dearborn, Michigan, USA, 2008.
    [8] HAGG A C, SANKEY G O. The containment of disk burst fragment by cylindrical shells [J] . Journal of Engineering for Gas Turbines & Power, 1974, 96(2): 114.
    [9] LI J J, XUAN H J, LIAO L F, et al. Penetration of disk fragments following impact on thin plate [J]. Journal of Zhejiang University–Science A, 2009, 10(5): 677–684. doi: 10.1631/jzus.A0820746
    [10] 唐金, 唐广, 宣海军, 等. 航空发动机涡轮机匣轮盘包容性研究 [J]. 航空动力学报, 2016, 31(6): 1393−1399.

    TANG J, TANG G, XUAN H J, et al. Investigation on disk containment of aero-engine turbine casing [J]. Journal of Aerospace Power, 2016, 31(6): 1393−1399.
    [11] 周琳, 王子豪, 文鹤鸣. 简论金属材料JC本构模型的精确性 [J]. 高压物理学报, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721

    ZHOU L, WANG Z H, WEN H M. On the accuracy of the Johnson-Cook constitutive model for metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721
    [12] 陈刚. 半穿甲战斗部弹体穿甲效应数值模拟与实验研究 [D]. 绵阳: 中国工程物理研究院, 2006.

    CHEN G. Numerical and experimental investigation on penetration effects of semi-armor-piercing warhead [D]. Mianyang: China Academy of Engineering Physics, 2006.
    [13] WANG Y F, YANG Z G. A coupled finite element and meshfree analysis of erosive wear [J]. Tribology International, 2009, 42(2): 373−377.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  122
  • PDF下载量:  32
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-06-20
  • 网络出版日期:  2022-11-23
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回