典型固体抑爆剂对乙炔-空气的抑爆特性

夏煜 程扬帆 胡芳芳 王瑞 朱守军 沈兆武

夏煜, 程扬帆, 胡芳芳, 王瑞, 朱守军, 沈兆武. 典型固体抑爆剂对乙炔-空气的抑爆特性[J]. 高压物理学报, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580
引用本文: 夏煜, 程扬帆, 胡芳芳, 王瑞, 朱守军, 沈兆武. 典型固体抑爆剂对乙炔-空气的抑爆特性[J]. 高压物理学报, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580
XIA Yu, CHENG Yangfan, HU Fangfang, WANG Rui, ZHU Shoujun, SHEN Zhaowu. Inhibition Characteristics of Typical Solid Explosion Suppressors on Acetylene-Air Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580
Citation: XIA Yu, CHENG Yangfan, HU Fangfang, WANG Rui, ZHU Shoujun, SHEN Zhaowu. Inhibition Characteristics of Typical Solid Explosion Suppressors on Acetylene-Air Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580

典型固体抑爆剂对乙炔-空气的抑爆特性

doi: 10.11858/gywlxb.20220580
基金项目: 国家自然科学基金(11972046);安徽省自然科学基金(2108085Y02);安徽省高校自然科学基金重大项目(KJ2020ZD30);安徽理工大学研究生创新基金(2021CX2026)
详细信息
    作者简介:

    夏 煜(1998- ),男,硕士研究生,主要从事可燃粉尘的防爆和抑爆研究. E-mail:1433515089@qq.com

    通讯作者:

    程扬帆(1987- ),男,博士,副教授,博士生导师,主要从事爆炸力学和爆炸安全研究. E-mail:cyf518@mail.ustc.edu.cn

  • 中图分类号: O521.9; O389

Inhibition Characteristics of Typical Solid Explosion Suppressors on Acetylene-Air Explosion

  • 摘要: 为了揭示固体抑爆剂对乙炔-空气预混气体爆炸的抑爆效果,采用20 L球形爆炸测试系统,研究了典型固体抑爆剂SiO2、Al(OH)3和NaHCO3对乙炔-空气预混气体爆炸特性的影响。结果表明:低粉体浓度(300 g/m3以下)的SiO2对乙炔-空气的爆炸威力具有促进作用,而高粉体浓度的SiO2则具有显著的抑制作用;SiO2、Al(OH)3和NaHCO3 3种固体抑爆剂对乙炔-空气的抑爆效果依次增强;SiO2和Al(OH)3分别通过颗粒自身和分解吸热(生成Al2O3和H2O)来降低乙炔-空气的爆炸威力,而NaHCO3分解会产生Na2CO3、H2O和CO2,兼具气、固、液三相的抑爆特点,因而对乙炔-空气预混气体的抑爆效果最好。

     

  • 图  20 L球形爆炸测试系统示意图

    Figure  1.  Schematic diagram of the 20 L spherical explosion test system

    图  固体抑爆剂粉体的粒径分布

    Figure  2.  Particle size distribution of solid explosion suppressors

    图  乙炔-空气爆炸压力时程曲线($\varphi$=1)

    Figure  3.  Explosion pressure-time curve of C2H2-air ($\varphi$=1)

    图  不同SiO2粉体浓度下乙炔-空气爆炸压力时程曲线

    Figure  4.  Explosion pressure-time curves of C2H2-air at different concentrations of SiO2

    图  SiO2对乙炔-空气爆炸特性的影响

    Figure  5.  Effect of SiO2 on explosion characteristics of C2H2-air

    图  不同Al(OH)3粉体浓度下乙炔-空气爆炸压力时程曲线

    Figure  6.  Explosion pressure-time curves of C2H2-air at different concentrations of Al(OH)3

    图  Al(OH)3对乙炔-空气爆炸特性的影响

    Figure  7.  Effect of Al(OH)3 on explosion characteristics of C2H2-air

    图  不同NaHCO3粉体浓度下乙炔-空气爆炸压力时程曲线

    Figure  8.  Explosion pressure-time curves of C2H2-air at different concentrations of NaHCO3

    图  NaHCO3对乙炔-气体爆炸特性的影响

    Figure  9.  Effect of NaHCO3 on explosion characteristics C2H2-air

    图  10  爆炸压力敏感性分析

    Figure  10.  Sensitivity analysis of explosion pressure

    图  11  3种固体抑爆剂的抑爆特性对比

    Figure  11.  Explosion inhibition characteristics of three solid explosion suppressors

    表  1  影响爆炸压力的主要反应

    Table  1.   Main reactions affecting explosion pressure

    No.Reaction No.Reaction
    R1H+O2↔O+OH R158C2H2+O↔HCCO+H
    R39HCO+M↔CO+H+MR161C2H2+OH↔C2H+H2O
    R41HCO+O2↔CO+HO2R166C2H2+C2H↔C4H2+H
    R141C2H+O2↔HCO+COR194C2H3+O2↔CH2CHO+O
    R155C2H3(+M) ↔C2H2+H(+M)R195C2H3+O2↔HCO+CH2O
    下载: 导出CSV
  • [1] 苏武, 石孝刚, 吴迎亚, 等. 乙炔加氢制乙烯浆态床反应器的CFD模拟 [J]. 化工学报, 2019, 70(5): 1858–1867. doi: 10.11949/j.issn.0438-1157.20181245

    SU W, SHI X G, WU Y Y, et al. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed [J]. CIESC Journal, 2019, 70(5): 1858–1867. doi: 10.11949/j.issn.0438-1157.20181245
    [2] 魏雪梅, 马占伟, 慕新元, 等. 乙炔羰基化反应催化剂: 由均相到多相 [J]. 化学进展, 2021, 33(2): 243–253. doi: 10.7536/PC200504

    WEI X M, MA Z W, MU X Y, et al. Catalyst in acetylene carbonylation: from homogeneous to heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243–253. doi: 10.7536/PC200504
    [3] 郭璐, 徐徽, 朱云峰, 等. 杂质对乙炔气体分解爆炸的影响研究 [J]. 现代化工, 2019, 39(Suppl 1): 153–157. doi: 10.16606/j.cnki.issn0253-4320.2019.S.034

    GUO L, XU H, ZHU Y F, et al. Study on influence of impurities on decomposition and explosion of acetylene gas [J]. Modern Chemical Industry, 2019, 39(Suppl 1): 153–157. doi: 10.16606/j.cnki.issn0253-4320.2019.S.034
    [4] 牟秀娟, 朱干宇, 颜坤, 等. 干法电石渣性质分析及乙炔气逸出行为研究 [J]. 化工学报, 2021, 72(2): 1107–1115. doi: 10.11949/0438-1157.20201263

    MU X J, ZHU G Y, YAN K, et al. Properties analysis of dry-process calcium carbide slag and study on acetylene gas escape behavior [J]. CIESC Journal, 2021, 72(2): 1107–1115. doi: 10.11949/0438-1157.20201263
    [5] 王文涛, 程扬帆, 姚雨乐, 等. 当量比对乙炔/空气爆炸特性和火焰速度的影响 [J]. 中南大学学报(自然科学版), 2022, 53(2): 433–442. doi: 10.11817/j.issn.1672-7207.2022.02.008

    WANG W T, CHENG Y F, YAO Y L, et al. Effects of equivalence ratios on explosion characteristics and flame speeds of acetylene/air mixture [J]. Journal of Central South University (Science and Technology), 2022, 53(2): 433–442. doi: 10.11817/j.issn.1672-7207.2022.02.008
    [6] 赵禹忱, 金静, 邓兆鋆, 等. 危化品火灾危险性及事故调查技术研究进展 [J]. 消防科学与技术, 2020, 39(1): 132–135. doi: 10.3969/j.issn.1009-0029.2020.01.040

    ZHAO Y C, JIN J, DENG Z Y, et al. Research progress on fire hazard and accident investigation technology of dangerous chemicals [J]. Fire Science and Technology, 2020, 39(1): 132–135. doi: 10.3969/j.issn.1009-0029.2020.01.040
    [7] WANG S M, CAI Y X, GUO H, et al. Effect of fuel concentration, inert gas dilutions, inert gas-water mist twin fluid medium dilutions, and end boundary condition on overpressure transients of premixed fuel vapor explosion [J]. Fuel, 2022, 309: 122083. doi: 10.1016/j.fuel.2021.122083
    [8] LUO Z M, WANG T, TIAN Z H, et al. Experimental study on the suppression of gas explosion using the gas-solid suppressant of CO2/ABC powder [J]. Journal of Loss Prevention in the Process Industries, 2014, 30: 17–23. doi: 10.1016/j.jlp.2014.04.006
    [9] WANG F H, CHEN W, WEN X P, et al. Numerical simulation and mechanism analysis of gas explosion suppression by ultrasonic water mist [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(23): 2821–2833. doi: 10.1080/15567036.2019.1576077
    [10] WEN X P, SU T F, WANG F H, et al. Inert nanoparticle suppression of gas explosion in the presence of obstacles [J]. RSC Advances, 2018, 8(68): 39120–39125. doi: 10.1039/C8RA06000B
    [11] 丁超, 王信群, 徐海顺, 等. 喷射超细ABC粉体对瓦斯爆炸的抑制与增强作用 [J]. 煤炭学报, 2021, 46(6): 1799–1807. doi: 10.13225/j.cnki.jccs.HZ21.0350

    DING C, WANG X Q, XU H S, et al. Suppression and enhancement of methane/air explosion by discharge of ultrafine ABC powders [J]. Journal of China Coal Society, 2021, 46(6): 1799–1807. doi: 10.13225/j.cnki.jccs.HZ21.0350
    [12] 宋诗祥. 悬浮CaC2粉尘气固两相爆炸特性及抑爆机理研究 [D]. 淮南: 安徽理工大学, 2020: 24−25.

    SONG S X. Study on the gas-solid two-phase explosion performance and suppression mechanism of suspended CaC2 dust [D]. Huainan: Anhui University of Science & Technology, 2020: 24−25.
    [13] MIZUTANI T, MIYAKE A, MATSUI H. Decomposing deflagration properties of acetylene under low temperatures [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4): 688–690. doi: 10.1016/j.jlp.2007.04.040
    [14] 王犇, 曹居正, 马翔, 等. 乙炔燃爆特性的研究 [J]. 安全与环境学报, 2012, 12(3): 168–171. doi: 10.3969/j.issn.1009-6094.2012.03.040

    WANG B, CAO J Z, MA X, et al. Study of the characteristic features of the acetylene explosives [J]. Journal of Safety and Environment, 2012, 12(3): 168–171. doi: 10.3969/j.issn.1009-6094.2012.03.040
    [15] KOPYLOV S N, GUBINA T V. Inhibiting the combustion of air-acetylene mixtures [J]. Russian Journal of Physical Chemistry A, 2016, 90(1): 43–47. doi: 10.1134/S0036024416010155
    [16] CHEN X F, ZHANG Y, ZHANG Q M, et al. Experimental investigation on micro-dynamic behavior of gas explosion suppression with SiO2 fine powders [J]. Theoretical and Applied Mechanics Letters, 2011, 1(3): 032004. doi: 10.1063/2.1103204
    [17] LIU B, XU K L, ZHANG Y Y, et al. PAN dust explosion inhibition mechanisms of NaHCO3 and Al(OH)3 [J]. Journal of Loss Prevention in the Process Industries, 2021, 73: 104619. doi: 10.1016/j.jlp.2021.104619
    [18] WANG Y, LIN C D, QI Y Q, et al. Suppression of polyethylene dust explosion by sodium bicarbonate [J]. Powder Technology, 2020, 367: 206–212. doi: 10.1016/j.powtec.2020.03.049
    [19] 纪文涛, 李璐, 李忠, 等. 聚磷酸铵抑制PMMA粉尘爆炸特性研究 [J]. 化工学报, 2022, 73(1): 461–469. doi: 10.11949/0438-1157.20211267

    JI W T, LI L, LI Z, et al. Study on suppression of PMMA dust explosion by ammonium polyphosphate [J]. CIESC Journal, 2022, 73(1): 461–469. doi: 10.11949/0438-1157.20211267
    [20] SAENKO E V, HUO Y, SHAMSUTDINOV A S, et al. Mesoporous hydrophobic silica nanoparticles as flow-enhancing additives for fire and explosion suppression formulations [J]. ACS Applied Nano Materials, 2020, 3(3): 2221–2233. doi: 10.1021/acsanm.9b02309
    [21] 丁信伟, 宋占兵, 喻健良. 预混火焰在冷壁面狭缝中传播与熄灭的判据 [J]. 燃烧科学与技术, 2005, 11(4): 308–314. doi: 10.3321/j.issn:1006-8740.2005.04.004

    DING X W, SONG Z B, YU J L. Criterion of propagation and quenching of premixed flames in cold walled narrow channels [J]. Journal of Combustion Science and Technology, 2005, 11(4): 308–314. doi: 10.3321/j.issn:1006-8740.2005.04.004
    [22] LIU R Z, ZHANG M C, JIA B S. Inhibition of gas explosion by nano-SiO2 powder under the condition of obstacles [J]. Integrated Ferroelectrics, 2021, 216(1): 305–321. doi: 10.1080/10584587.2021.1911296
    [23] DASTIDAR A G, AMYOTTE P R, GOING J, et al. Flammability limits of dusts: minimum inerting concentrations [J]. Process Safety Progress, 1999, 18(1): 56–63. doi: 10.1002/prs.680180111
    [24] 赵玉成, 王明智, 王艳辉, 等. 液相法纳米氧化铝粉的制备 [J]. 燕山大学学报, 2005, 29(1): 88–91. doi: 10.3969/j.issn.1007-791X.2005.01.021

    ZHAO Y C, WANG M Z, WANG Y H, et al. Preparation of nanometer alumina powder by liquid method [J]. Journal of Yanshan University, 2005, 29(1): 88–91. doi: 10.3969/j.issn.1007-791X.2005.01.021
    [25] 文虎, 王秋红, 邓军, 等. 超细Al(OH)3粉体浓度对甲烷爆炸压力的影响 [J]. 煤炭学报, 2009, 34(11): 1479–1482. doi: 10.3321/j.issn:0253-9993.2009.11.009

    WEN H, WANG Q H, DENG J, et al. Effect of the concentration of Al(OH)3 ultrafine powder on the pressure of methane explosion [J]. Journal of China Coal Society, 2009, 34(11): 1479–1482. doi: 10.3321/j.issn:0253-9993.2009.11.009
    [26] 陈祖敏, 吕建梅, 宁进生. 低烟阻燃PVC电缆料的研制 [J]. 塑料科技, 1997(4): 1–2, 5. doi: 10.15925/j.cnki.issn1005-3360.1997.04.001

    CHEN Z M, LYU J M, NING J S. The studying of the lower smokingness and flame retardance PVC cable [J]. Plastics Science and Technology, 1997(4): 1–2, 5. doi: 10.15925/j.cnki.issn1005-3360.1997.04.001
    [27] 孙刚. 淀粉/EVA复合发泡材料的制备与性能研究 [D]. 株洲: 湖南工业大学, 2014: 27−28.

    SUN G. Preparation and performance study of starch/EVA foam composite materials [D]. Zhuzhou: Hunan University of Technology, 2014: 27−28.
    [28] 郑立刚, 王亚磊, 于水军, 等. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析 [J]. 化工学报, 2018, 69(9): 4129–4136. doi: 10.11949/j.issn.0438-1157.20180433

    ZHENG L G, WANG Y L, YU S J, et al. Coupled relationship between flame and overpressure of gas explosion inhibited by NaHCO3 [J]. CIESC Journal, 2018, 69(9): 4129–4136. doi: 10.11949/j.issn.0438-1157.20180433
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  95
  • PDF下载量:  33
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-05-28
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回