锗在高压下的往复相变行为

袁琴 李帅锜 周礼 贺端威

袁琴, 李帅锜, 周礼, 贺端威. 锗在高压下的往复相变行为[J]. 高压物理学报, 2022, 36(5): 051104. doi: 10.11858/gywlxb.20220578
引用本文: 袁琴, 李帅锜, 周礼, 贺端威. 锗在高压下的往复相变行为[J]. 高压物理学报, 2022, 36(5): 051104. doi: 10.11858/gywlxb.20220578
YUAN Qin, LI Shuaiqi, ZHOU Li, HE Duanwei. Reciprocating Phase Transitions Behavior of Germanium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051104. doi: 10.11858/gywlxb.20220578
Citation: YUAN Qin, LI Shuaiqi, ZHOU Li, HE Duanwei. Reciprocating Phase Transitions Behavior of Germanium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051104. doi: 10.11858/gywlxb.20220578

锗在高压下的往复相变行为

doi: 10.11858/gywlxb.20220578
基金项目: 国家重点研发计划(2018YFA0305900)
详细信息
    作者简介:

    袁 琴(1996-),女,硕士研究生,主要从事高压下材料的相变研究.E-mail:yakeenyuan@foxmail.com

    通讯作者:

    贺端威(1969-),男,博士,教授,主要从事高压物理、大腔体静高压技术以及超硬材料研究.E-mail:duanweihe@scu.edu.cn

  • 中图分类号: O521.23

Reciprocating Phase Transitions Behavior of Germanium under High Pressure

  • 摘要: 利用基于六面顶压机的二级6-8型高压装置和金刚石对顶砧技术,结合北京同步辐射光源高压原位X射线衍射技术,对锗在高压下的相演化行为以及晶粒尺寸变化规律进行了系统的研究,发现往复压致相变对锗的晶粒细化有明显效果,同时在经历往复压致相变5次的块体样品中发现了非晶区域,为纳米结构和非晶材料制备提供了一种新的思路。

     

  • 图  锗的晶胞结构及相变路径

    Figure  1.  Unit cell structure and phase transition path of germanium

    图  立方金刚石结构锗的晶胞图(a)以及初始样品的XRD谱(b)和光学照片(c)

    Figure  2.  (a) Unit cell diagram of cubic diamond-structured germanium, (b) XRD pattern of the initial sample, (c) optical microscope photograph of the initial sample

    图  (a) 实验组装示意图(用MgO八面体对样品进行包裹);(b) 含有二级增压装置的6×8 MN六面顶压机示意图(组装好的样品和MgO八面体放置在由8个碳化钨硬质合金截角立方块合围成的八面体压腔的中心位置,通过二级增压装置对样品施加高压);(c) 实验中的压力-时间曲线(5次往复加压-卸压实验曲线)

    Figure  3.  (a) Schematic diagram of the assembly used in the experiment, the sample was wrapped within a magnesia octahedron; (b) schematic diagram of a 6×8 MN cubic press with a secondary booster device, the assembled sample was placed in the center of the carbide blocks, and subjected to high pressure through a secondary booster device; (c) pressure-time curve used during the experiment (the above figure is the curve of the five-cycle reciprocating experiment)

    图  (a) 经历3次往复压致相变样品的 SEM 图像(晶粒细化到几百纳米);(b) 经历5次往复压致相变样品的SEM图像(最小晶粒细化到几十纳米);(c) 初始样品的 SEM 图像

    Figure  4.  (a) SEM image of the sample undergoing three cycles of reciprocating pressure-induced phase transitions, and the grains have been refined to several hundreds of nanometers; (b) SEM image of the sample undergoing five cycles of reciprocating pressured-induced phase transitions, and the smallest grains have been refined to several tens of nanometers; (c) SEM image of the initial sample

    图  往复5次所得样品的XRD谱和Rietveld拟合曲线

    Figure  5.  XRD pattern and Rietveld fitting curve of the sample undergoing five cycles of reciprocating pressing

    图  (a) 往复5次所得样品的TEM图像(可见大片非晶区域);(b) 图6(a)中红圈区域的SAED图像(出现明显的非晶环);(c) 图6(b)对应的HRTEM图像(原子呈长程无序状态);(d) HRTEM图像的iFFT图像;(e)~(f) 低倍数下的非晶区域

    Figure  6.  (a) TEM topographic image of the sample undergoing five cycles of reciprocating pressing, and a large amorphous region was found; (b) SAED image of the red circle region shown in (a), an obvious amorphous ring appears; (c) HRTEM image of the region in (b), where atoms were observed to exhibit long-range disorder; (d) iFFT image of the HRTEM image region; (e)–(f) amorphous regions of random distributions observed at low magnifications

    图  (a)原位电阻测量实验所用组装示意图;(b) 3~6次往复压致相变实验测得的原位压力-电压(电阻)曲线

    Figure  7.  (a) Schematic diagram of the assembly used in electric resistance measurement experiments; (b) in situ pressure-voltage (resistance) curves corresponding to three to six cycles of reciprocating pressure-induced phase transitions experiments

    图  3~6次往复压致相变过程中Avrami指数的变化规律

    Figure  8.  Variation of the Avrami index during the experimental process of three to six cycles of reciprocating pressure-induced phase transitions

    图  高Avrami指数对应的升卸压过程的压力区间

    Figure  9.  Maximum Avrami index corresponding to the pressure range

    图  10  DC Ge (a)、β-Sn Ge (b)、ST12 Ge (c)晶格的(001)面示意图

    Figure  10.  Schematic diagrams of the (001) planes: (a) DC Ge, (b) β-Sn Ge, and (c) ST12 Ge

    图  11  (a)第5次往复相变升卸压过程采集的原位XRD谱(在 0~15 GPa压力区间完成了 ST12 Ge—β-Sn Ge—ST12 Ge两次相变);(b) 往复2~5次后卸压到 0 GPa 时样品的XRD谱;(c) 图11(b)中 XRD谱中特征峰的峰宽变化

    Figure  11.  (a) In-situ XRD patterns collected during the fifth reciprocating phase transition compressing (0–15 GPa) and decompressing (15–0 GPa) process, two phase transitions of ST12 Ge–β-Sn Ge–ST12 Ge were completed; (b) XRD patterns collected after two to five cycles of experimental pressure uploading and decompressing to 0 GPa; (c) the full width at half maxima (FWHM) of characteristic peaks of XRD patterns in (b)

    图  12  XRD区域示意图

    Figure  12.  Schematic of XRD regions

    图  13  (a) 往复5次后样品另一区域的SEM图像(在该区域观测到了微米级晶粒);(b) 往复5次后样品晶态区的SAED图像(观测到明显的多晶环);(c) 多晶区域的HRTEM图像(在多晶区域仍然存在部分非晶区,A和B分别为非晶区和多晶区的iFFT图像);(d) ST12 Ge样品加热的DSC曲线(发现1个吸热峰,对应ST12 Ge到DC Ge的相变温度);(e) 在相变温度加热1 h后的XRD谱(表明样品已经全部转化为DC Ge)

    Figure  13.  (a) SEM image of another area in the sample with five cycles of reciprocation, in which grains in the size of micrometers were observed; (b) SAED pattern of the crystal region in the sample undergoing five cycles of reciprocation, showing the obvious polycrystalline ring; (c) HRTEM image of the polycrystalline region, in which some amorphous regions still exist, A and B are the iFFT images of the amorphous and polycrystalline regions, respectively; (d) DSC curve of the ST12 Ge sample heated, an endothermic peak was found, corresponding to the phase transition temperature from ST12 Ge to DC Ge; (e) XRD pattern after heating for 1 h at the phase transition temperature, the sample has been completely transformed into DC Ge

    表  1  Avrami 指数与时间和压力的对应关系

    Table  1.   Avrami index corresponding to time and pressure

    Processnln tp/GPa Processnln tp/GPa
    3CD-D13.92a 8.06–8.209.07–8.43 5CD-D18.55a 8.46–8.589.22–8.32
    4.50b7.69–8.0610.52–9.07 7.13b8.14–8.4611.23–9.22
    2.14c7.08–7.6912.02–10.524.90c7.70–8.1412.73–11.23
    4CD-C27.30a 7.75–7.8111.81–12.066CD-C22.09a 7.46–7.6011.08–11.31
    8.22b7.81–8.0012.06–12.625.43b7.60–7.9411.31–12.58
    3.86c8.00–8.4812.62–14.823.16c7.94–8.5212.58–14.97
    4CD-D21.90a 8.45–8.578.99–8.256CD-D45.00a 8.48–8.528.79–8.40
    6.87b8.16–8.4511.10–8.99 21.15b 8.03–8.489.81–8.79
    3.12c7.48–8.1613.37–11.105.40c7.71–8.3312.60–9.81
    5CD-C17.73a 31.87–33.1411.31–11.81
    5.26b33.14–37.0011.81–13.17
    3.39c37.00–44.8713.17–15.13
    Note: Superscript lowercase letters a, b and c represent the maximum, the median and the minimum values of the Avrami index during the compression and decompression process, respectively.
    下载: 导出CSV
  • [1] BUNDY F P, BASSETT W A, WEATHERS M S, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994 [J]. Carbon, 1996, 34(2): 141–153. doi: 10.1016/0008-6223(96)00170-4
    [2] DURANDURDU M, DRABOLD D A. High-pressure phases of amorphous and crystalline silicon [J]. Physical Review B, 2003, 67(21): 212101.
    [3] BRAZHKIN V V, LYAPIN A G, VOLOSHIN R N, et al. Pressure-induced crossover between diffusive and displacive mechanisms of phase transitions in single-crystalline α-GeO2 [J]. Physical Review Letters, 2003, 90(14): 145503. doi: 10.1103/PhysRevLett.90.145503
    [4] LI D J, WANG J T, DING B Z, et al. Thermodynamic analysis of pressure-quenching process [J]. Scripta Metallurgica et Materialia, 1993, 28(9): 1083–1088. doi: 10.1016/0956-716X(93)90014-J
    [5] 姜伊辉. 基于解析模型的形核-长大型固态相变动力学研究[D]. 西安: 西北工业大学, 2015

    JIANG Y H. Application of analytical model for the study of interface-controlled solid-state phase transformation kinetics [D]. Xi’an: Northwestern Polytechnical University, 2015.
    [6] 李冬剑, 丁炳哲, 胡壮麒, 等. 块状Cu-Ti纳米晶合金的直接形成——高压下从高温固相淬火 [J]. 科学通报, 1994, 39(19): 1749–1751. doi: 10.1360/csb1994-39-19-1749

    LI D J, DING B Z, HU Z Q, et al. Direct formation of bulk Cu-Ti nanocrystalline alloys-quenching from high temperature solid phase at high pressure [J]. Chinese Science Bulletin, 1994, 39(19): 1749–1751. doi: 10.1360/csb1994-39-19-1749
    [7] AVRAMI M. Kinetics of phase change. Ⅱ transformation-time relations for random distribution of nuclei [J]. The Journal of Chemical Physics, 1940, 8(2): 212–224. doi: 10.1063/1.1750631
    [8] KOLMOGOROV A N. On the statistical theory of the crystallization of metals [J]. Bulletin of the Academy of Sciences of the USSR, Mathematics Series, 1937, 1: 355–359.
    [9] JOHNSON W A, MEHL R F. Reaction kinetics in processes of nucleation and growth [J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1939, 135: 416–458.
    [10] SMITH E G, LANG C I. High temperature resistivity and thermo-EMF of RuAl [J]. Scripta Metallurgica et Materialia, 1995, 33(8): 1225–1229. doi: 10.1016/0956-716X(95)00374-5
    [11] 李欣. 铋、铁、硅在高压下的往复相变行为研究 [D]. 成都: 四川大学, 2020.

    LI X. Study on reciprocating transformation behavior of bismuth, iron and silicon under high pressure [D]. Chengdu: Sichuan University, 2020.
    [12] MINOMURA S, SAMARA G A, DRICKAMER H G. Temperature coefficient of resistance of the high pressure phases of Si, Ge, and some Ⅲ–Ⅴ and Ⅱ–Ⅵ compounds [J]. Journal of Applied Physics, 1962, 33(11): 3196–3197. doi: 10.1063/1.1931135
    [13] KAWAI N, ENDO S. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus [J]. Review of Scientific Instruments, 1970, 41(8): 1178–1181. doi: 10.1063/1.1684753
    [14] BAUBLITZ M A, RUOFF A L, HUANG T L. Energy dispersive-X-ray diffraction at high-pressure in CHESS [J]. Journal of Metals, 1982, 35(12): A60.
    [15] MENONI C S, HU J Z, SPAIN I L. Germanium at high pressures [J]. Physical Review B, 1986, 34(1): 362–368. doi: 10.1103/PhysRevB.34.362
    [16] BLANK V D, MALYUSHITSKAYA Z V. Structural mechanisms of Si (Ge)-Ⅲ phase-transformations. 2. germanium [J]. Kristallografiya, 1993, 38(4): 179–185.
    [17] 何飞, 贺端威, 马迎功, 等. 二级6-8型静高压装置厘米级腔体的设计原理与实验研究 [J]. 高压物理学报, 2015, 29(3): 161–168. doi: 10.11858/gywlxb.2015.03.001

    HE F, HE D W, MA Y G, et al. Design principles and experimental study of centimeter-scale sample chamber for two-stage 6-8 type static high pressure apparatus [J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 161–168. doi: 10.11858/gywlxb.2015.03.001
    [18] 王海阔, 贺端威, 许超, 等. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35 GPa [J]. 物理学报, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703

    WANG H K, HE D W, XU C, et al. Calibration of pressure to 35 GPa for the cubic press using the diamond-cemented carbide compound anvil [J]. Acta Physica Sinica, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [19] 王福龙, 贺端威, 房雷鸣, 等. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置 [J]. 物理学报, 2008, 57(9): 5429–5434. doi: 10.7498/aps.57.5429

    WANG F L, HE D W, FANG L M, et al. Design and assembly of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press [J]. Acta Physica Sinica, 2008, 57(9): 5429–5434. doi: 10.7498/aps.57.5429
    [20] 王文丹, 贺端威, 王海阔, 等. 二级6-8型大腔体装置的高压发生效率机理研究 [J]. 物理学报, 2010, 59(5): 3107–3115. doi: 10.7498/aps.59.3107

    WANG W D, HE D W, WANG H K, et al. Reaserch on pressure generation efficiency of 6-8 type multianvil high pressure apparatus [J]. Acta Physica Sinica, 2010, 59(5): 3107–3115. doi: 10.7498/aps.59.3107
    [21] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4): 235–248. doi: 10.1080/08957959608201408
    [22] 轩园园. 纳米硅材料的压力诱导相变 [D]. 北京: 中国工程物理研究院, 2020.

    XUAN Y Y. Pressure-induced phase transitions in nanostructured silicon [D]. Beijing: China Academy of Engineering Physics, 2020.
    [23] KOOI B J. Extension of the Johnson-Mehl-Avrami-Kolmogorov theory incorporating anisotropic growth studied by Monte Carlo simulations [J]. Physical Review B, 2006, 73(5): 054103. doi: 10.1103/PhysRevB.73.054103
    [24] LIU F, SONG S J, XU J F, et al. Determination of nucleation and growth modes from evaluation of transformed fraction in solid-state transformation [J]. Acta Materialia, 2008, 56(20): 6003–6012. doi: 10.1016/j.actamat.2008.08.011
    [25] CHRISTIAN J W. The theory of transformations in metals and alloys [M]. Oxford: Pergamon Press, 1965.
    [26] KATZKE H, BISMAYER U, TOLEDANO P. Theory of the high-pressure structural phase transitions in Si, Ge, Sn, and Pb [J]. Physical Review B, 2006, 73(13): 134105. doi: 10.1103/PhysRevB.73.134105
    [27] MUJICA A, NEEDS R J. First-principles calculations of the structural properties, stability, and band structure of complex tetrahedral phases of germanium: ST12 and BC8 [J]. Physical Review B, 1993, 48(23): 17010–17017. doi: 10.1103/PhysRevB.48.17010
    [28] KASPER J S, RICHARDS S M. The crystal structures of new forms of silicon and germanium [J]. Acta Crystallographica, 1964, 17(6): 752–755. doi: 10.1107/S0365110X64001840
    [29] CLARK S J, ACKLAND G J, CRAIN J. Theoretical study of high-density phases of covalent semiconductors. Ⅱ. empirical treatment [J]. Physical Review B, 1994, 49(8): 5341–5352. doi: 10.1103/PhysRevB.49.5341
    [30] BRADBY J E, WILLIAMS J S, WONG-LEUNG J, et al. Mechanical deformation in silicon by micro-indentation [J]. Journal of Materials Research, 2001, 16(5): 1500–1507. doi: 10.1557/JMR.2001.0209
    [31] NOZAKI S, SATO S, ONO H, et al. Phase transformation of germanium ultrafine particles at high temperature [J]. Mrs Proceedings, 1995, 405: 223–228. doi: 10.1557/PROC-405-223
    [32] ZHAO Z S, ZHANG H D, KIM D Y, et al. Properties of the exotic metastable ST12 germanium allotrope [J]. Nature Communications, 2017: 8. doi: 10.1038/ncomms13909
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  152
  • PDF下载量:  62
出版历程
  • 收稿日期:  2022-05-08
  • 修回日期:  2022-06-17
  • 网络出版日期:  2022-09-24
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回