不同试验条件和含水状态下花岗岩的声发射与破裂演化特征

张恒源 郭佳奇 孙飞跃 石晓燕 朱子辉

张恒源, 郭佳奇, 孙飞跃, 石晓燕, 朱子辉. 不同试验条件和含水状态下花岗岩的声发射与破裂演化特征[J]. 高压物理学报, 2022, 36(6): 064102. doi: 10.11858/gywlxb.20220577
引用本文: 张恒源, 郭佳奇, 孙飞跃, 石晓燕, 朱子辉. 不同试验条件和含水状态下花岗岩的声发射与破裂演化特征[J]. 高压物理学报, 2022, 36(6): 064102. doi: 10.11858/gywlxb.20220577
ZHANG Hengyuan, GUO Jiaqi, SUN Feiyue, SHI Xiaoyan, ZHU Zihui. Acoustic Emission and Fracture Evolution Characteristics of Granite under Different Testing and Moisture Conditions[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064102. doi: 10.11858/gywlxb.20220577
Citation: ZHANG Hengyuan, GUO Jiaqi, SUN Feiyue, SHI Xiaoyan, ZHU Zihui. Acoustic Emission and Fracture Evolution Characteristics of Granite under Different Testing and Moisture Conditions[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064102. doi: 10.11858/gywlxb.20220577

不同试验条件和含水状态下花岗岩的声发射与破裂演化特征

doi: 10.11858/gywlxb.20220577
基金项目: 国家自然科学基金(52178388,51778215);河南省自然科学基金(212300410146);河南省科技攻关项目(212102310292)
详细信息
    作者简介:

    张恒源(1998-),男,硕士研究生,主要从事隧道与地下工程防灾减灾研究.E-mail:zhy983@163.com

    通讯作者:

    郭佳奇(1981-),男,博士,副教授,博士生导师,主要从事隧道与地下工程防灾减灾研究.E-mail:gjq519@163.com

  • 中图分类号: O347; TU45

Acoustic Emission and Fracture Evolution Characteristics of Granite under Different Testing and Moisture Conditions

  • 摘要: 为进一步揭示含水岩石破裂演化机制和裂纹扩展规律,开展了不同含水状态花岗岩的单轴压缩试验、巴西劈裂试验和直剪试验,得到了岩石在变形破坏过程中的力学、声学信息,结合声发射振铃计数和特征参数(RA)与平均频率(AF)的相对关系,厘清了含水花岗岩在不同试验条件下的微观破裂特征。结果表明:水对岩石的抗压、抗拉、抗剪强度以及弹性模量均有明显的弱化作用;不同试验条件下花岗岩的声发射信号存在明显差异,单轴压缩条件下声发射振铃计数在峰值应力点附近激增且信号活动主要出现在峰值应力点后,巴西劈裂条件下声发射振铃计数的整体波动相对较小,直剪试验条件下振铃计数激增现象比单轴压缩明显提前,呈阶梯式增长;单轴压缩条件下张拉裂纹数量呈现先减少再增加的趋势,而剪切裂纹始终在减少,直剪试验条件下剪切裂纹占主导作用,巴西劈裂条件下张拉裂纹占主导作用;不同试验条件下水对花岗岩剪切裂纹和张拉裂纹的影响机制类似,水会促进岩石内部张拉裂纹的发育而抑制剪切裂纹的发育。研究结果可为进一步探究工程围岩在不同应力场下的破裂特征提供一定的参考依据。

     

  • 图  试验条件

    Figure  1.  Test condition

    图  不同试验条件下花岗岩的应力-应变曲线

    Figure  2.  Stress-strain curves of granite under different test conditions

    图  裂隙体积应变法确定岩石特征应力示意图

    Figure  3.  Diagram of determining rock characteristic stress by fracture volume strain method

    图  不同试验条件下水对强度的影响

    Figure  4.  Influence of water on strength under different test conditions

    图  弹性模量随含水率的变化

    Figure  5.  Variations of elastic modulus with water content

    图  声发射波形特征参数

    Figure  6.  Characteristic parameters of acoustic emission waveform

    图  单轴压缩下不同含水状态花岗岩的声发射特征

    Figure  7.  Acoustic emission characteristics of granite with different water-bearing states under uniaxial compression

    图  巴西劈裂试验下不同含水状态花岗岩的声发射特征

    Figure  8.  Acoustic emission characteristics of granite with different water-bearing states under Brazilian splitting test

    图  直剪试验下不同含水状态花岗岩的声发射特征

    Figure  9.  Acoustic emission characteristics of granite with different water-bearing states under direct shear test

    图  10  RA-AF信号分布散点图和密度图

    Figure  10.  Distribution and density of RA-AF signals

    图  11  RA-AF信号裂纹类型分类标准

    Figure  11.  Classification standard of RA-AF signal crack types

    图  12  单轴压缩下的RA-AF分布

    Figure  12.  RA-AF distribution under uniaxial compression

    图  13  单轴压缩下各个变形阶段的RA-AF分布

    Figure  13.  RA-AF distribution of each deformation stage under uniaxial compression

    图  14  巴西劈裂下的RA-AF分布

    Figure  14.  RA-AF distribution under Brazilian splitting

    图  15  直剪试验下的RA-AF分布

    Figure  15.  RA-AF distribution under direct shear test

    表  1  试验分组方案

    Table  1.   Test grouping scheme

    SampleTest modeStateDiameter/mmHeight/mmMass/g
    H-D-1Uniaxial compressionSaturated49.9099.75544.47
    H-D-2Nature50.57100.33544.60
    H-D-3Dry50.0699.48533.25
    H-B-1Brazilian splittingSaturated49.5830.53164.54
    H-B-2Nature50.1532.08163.16
    H-B-3Dry50.0130.48163.01
    H-Z-1Direct shearSaturated50.07100.36542.86
    H-Z-2Nature50.18100.28545.67
    H-Z-3Dry50.19101.29541.30
    下载: 导出CSV

    表  2  单轴压缩试验条件下不同含水状态花岗岩的特征应力

    Table  2.   Characteristic stress of granite with different water-bearing states under uniaxial compression

    Sampleσcc/MPaσci/MPaσcd/MPaσucs/MPa$\dfrac{ {\sigma{_ {\text{cc} } } } }{ {\sigma {_{\text{ucs} } } } }\Big{/}$%$\dfrac{ {\sigma{_ {\text{ci} } } } }{ {\sigma{_ {\text{ucs} } } } } \Big{/}$%$\dfrac{ {\sigma{_ {\text{cd} } } } }{ {\sigma{_ {\text{ucs} } } } }\Big{/}$%
    H-D-119.74555.80298.716130.20915.16442.85675.814
    H-D-222.85364.697110.453154.98714.74541.74371.266
    H-D-324.57472.417133.319194.71012.62137.19268.471
    下载: 导出CSV
  • [1] WANG C Y, CHANG X K, LIU Y L. Experimental study on fracture patterns and crack propagation of sandstone based on acoustic emission [J]. Advances in Civil Engineering, 2021: 1–13.
    [2] SAGONG M, PARK D, YOO J, et al. Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 1055–1067. doi: 10.1016/j.ijrmms.2011.09.001
    [3] 李术才. 加锚断续节理岩体断裂损伤模型及其应用 [D]. 武汉: 中国科学院武汉岩土力学研究所, 1996.

    LI S C. Anchored discontinuous jointed rockmass fracture-damage model and its application [D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 1996.
    [4] 刘泉声, 雷广峰, 彭星新. 深部裂隙岩体锚固机制研究进展与思考 [J]. 岩石力学与工程学报, 2016, 35(2): 312–332. doi: 10.13722/j.cnki.jrme.2015.0203

    LIU Q S, LEI G F, PENG X X. Advance and review on the anchoring mechanism in deep fractured rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 312–332. doi: 10.13722/j.cnki.jrme.2015.0203
    [5] WANG Y, MENG H J, LONG D Y. Experimental investigation of fatigue crack propagation in interbedded marble under multilevel cyclic uniaxial compressive loads [J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(4): 933–951.
    [6] NARA Y, HIROYOSHI N, YONEDA T, et al. Effects of relative humidity and temperature on subcritical crack growth in igneous rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 640–646. doi: 10.1016/j.ijrmms.2010.04.009
    [7] LIU X X, WU L X, ZHANG Y B, et al. Frequency properties of acoustic emissions from the dry and saturated rock [J]. Environmental Earth Sciences, 2019, 78(3).
    [8] 张安斌, 刘祥鑫, 张艳博, 等. 不同含水率泥质粉砂岩破裂声发射特性试验研究 [J]. 地下空间与工程学报, 2017, 13(3): 591–597.

    ZHANG A B, LIU X X, ZHANG Y B, et al. Experimental research on acoustic emission characteristics of argillaceous siltstone failure under different moisture contents [J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 591–597.
    [9] 赵奎, 冉珊瑚, 曾鹏, 等. 含水率对红砂岩特征应力及声发射特性的影响 [J]. 岩土力学, 2021, 42(4): 899–908.

    ZHAO K, RAN S H, ZENG P, et al. Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone [J]. Rock and Soil Mechanics, 2021, 42(4): 899–908.
    [10] 邓朝福, 刘建锋, 陈亮, 等. 不同含水状态花岗岩断裂力学行为及声发射特征 [J]. 岩土工程学报, 2017, 39(8): 7. doi: 10.11779/CJGE201708023

    DENG C F, LIU J F, CHEN L, et al. Mechanical behaviors and acoustic emission characteristics of fracture of granite under different moisture conditions [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 7. doi: 10.11779/CJGE201708023
    [11] LIU D, WANG Z, ZHANG X, et al. Experimental investigation on the mechanical and acoustic emission characteristics of shale softened by water absorption [J]. Journal of Natural Gas Science and Engineering, 2018, 50: 301–308. doi: 10.1016/j.jngse.2017.11.020
    [12] HUANG S, HE Y, LIU G, et al. Effect of water content on the mechanical properties and deformation characteristics of the clay-bearing red sandstone [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1767–1790. doi: 10.1007/s10064-020-01994-6
    [13] JCMS. Monitoring method for active cracks in concrete by acoustic emission: JCMS-Ⅲ B5706 [S]. Japan: Federation of Construction Materials Industries, 2003.
    [14] 何满潮, 赵菲, 杜帅, 等. 不同卸载速率下岩爆破坏特征试验分析 [J]. 岩土力学, 2014, 35(10): 2737–2747. doi: 10.16285/j.rsm.2014.10.001

    HE M C, ZHAO F, DU S, et al. Rockburst characteristics based on experimental tests under different unloading rates [J]. Rock and Soil Mechanics, 2014, 35(10): 2737–2747. doi: 10.16285/j.rsm.2014.10.001
    [15] DU K, LI X, TAO M, et al. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104411. doi: 10.1016/j.ijrmms.2020.104411
    [16] 刘沂琳, 王创业, 李昕昊, 等. 基于声发射与红外辐射的砂岩裂纹扩展规律 [J]. 地下空间与工程学报, 2021, 17(Suppl 2): 575–583.

    LIU Y L, WANG C Y, LI X H, et al. Sandstone crack propagation law based on acoustic emission and infrared radiation [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(Suppl 2): 575–583.
    [17] WANG H, LI J, GUO Q, et al. Experimental study on the influence of water on the failure properties of sandstone [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 7747–7771. doi: 10.1007/s10064-021-02410-3
    [18] YAO Q, CHEN T, TANG C, et al. Influence of moisture on crack propagation in coal and its failure modes [J]. Engineering Geology, 2019, 258: 105156. doi: 10.1016/j.enggeo.2019.105156
    [19] BIENIAWSKI Z T. Mechanism of brittle fracture of rock: Part Ⅰ: theory of the fracture process [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967, 4(4): 395–406.
    [20] BIENIAWSKI Z T. Mechanism of brittle rock fracture. Part Ⅱ: experimental studies [J]. International Journal of Rock Mechanics & Mining Sciences, 1967, 4(4): 407.
    [21] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究 [J]. 岩土力学, 2020, 41(7): 2324–2332. doi: 10.16285/j.rsm.2019.1460

    GAN Y X, WU S Y, REN Y, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters [J]. Rock and Soil Mechanics, 2020, 41(7): 2324–2332. doi: 10.16285/j.rsm.2019.1460
    [22] NIU Y, ZHOU X, BERTO F. Evaluation of fracture mode classification in flawed red sandstone under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102528. doi: 10.1016/j.tafmec.2020.102528
    [23] DONG L, ZHANG Y, MA J. Micro-crack mechanism in the fracture evolution of saturated granite and enlightenment to the precursors of instability [J]. Sensors, 2020, 20(16): 4595. doi: 10.3390/s20164595
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  224
  • PDF下载量:  53
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-05-30
  • 录用日期:  2022-08-23
  • 网络出版日期:  2022-11-04
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回