变速增压法制备的聚丙烯晶体结构与热性能

徐明锟 林嘉翔 张效琳 李贞印 邵春光

徐明锟, 林嘉翔, 张效琳, 李贞印, 邵春光. 变速增压法制备的聚丙烯晶体结构与热性能[J]. 高压物理学报, 2022, 36(5): 051103. doi: 10.11858/gywlxb.20220570
引用本文: 徐明锟, 林嘉翔, 张效琳, 李贞印, 邵春光. 变速增压法制备的聚丙烯晶体结构与热性能[J]. 高压物理学报, 2022, 36(5): 051103. doi: 10.11858/gywlxb.20220570
XU Mingkun, LIN Jiaxiang, ZHANG Xiaolin, LI Zhenyin, SHAO Chunguang. Crystal Structure and Thermal Properties of Polypropylene Prepared by Variable Speed Pressurization[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051103. doi: 10.11858/gywlxb.20220570
Citation: XU Mingkun, LIN Jiaxiang, ZHANG Xiaolin, LI Zhenyin, SHAO Chunguang. Crystal Structure and Thermal Properties of Polypropylene Prepared by Variable Speed Pressurization[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051103. doi: 10.11858/gywlxb.20220570

变速增压法制备的聚丙烯晶体结构与热性能

doi: 10.11858/gywlxb.20220570
基金项目: 国家自然科学基金(51573171)
详细信息
    作者简介:

    徐明锟(1996-),男,硕士研究生,主要从事聚合物高压结晶研究. E-mail:xumkofmail@163.com

    通讯作者:

    邵春光(1982-),男,博士,教授,主要从事高分子加工过程中的物理问题研究.E-mail:shaochg@zzu.edu.cn

  • 中图分类号: O521.2

Crystal Structure and Thermal Properties of Polypropylene Prepared by Variable Speed Pressurization

  • 摘要: 在聚合物的高压成型过程中,压力、增压速率以及聚合物的分子量都会影响制品的最终结晶结构,研究不同高压处理方法与等规聚丙烯(isotactic polypropylene,iPP)结晶结构之间的关系,有利于深入认识高压成型工艺对聚合物结晶行为的影响。利用广角X射线衍射技术和差示扫描量热法,研究了两种不同分子量的iPP在不同增压速率、不同压力下的结晶行为及制品的热性能。结果表明:压力是决定中间相iPP形成的关键因素,只要压力足够高,就能够制备出完全的中间相iPP;在足够高的压力下,增压速率越高,越有利于中间相iPP的形成,相反更容易形成γ相iPP;分子量越高,制备中间相iPP需要的压力越高,需要的临界增压速率越大。制品的热性能分析表明,不同条件下得到的中间相制品在热性能上基本没有区别,但γ相iPP的晶体完善性与增压条件有关。

     

  • 图  高压装置示意图 (a) 以及不同增压速率下iPP样品的制备过程示意图 (b)

    Figure  1.  Schematic diagram of the high-pressure cell (a) and schematic diagram of the preparation process curve of isotactic polypropylene samples at different pressurization rates (b)

    图  不同压力和增压速率下PP1和PP2结晶样品的2D-WAXD图

    Figure  2.  Two-dimensional WAXD patterns of PP1 and PP2 crystalline samples at different pressures and pressurization rates

    图  样品PP1 (a) 和PP2 (b) 在不同增压速率下的一维WAXD图以及样品PP1 (c) 和PP2 (d) 在不同增压速率下的相含量变化

    Figure  3.  One-dimensional WAXD patterns of sample PP1 (a) and PP2 (b), and the corresponding phase content changes of sample PP1 (c) and PP2 (d) at different pressurization rates

    图  样品PP1 (a)和PP2 (b)在不同增压速率下的一维WAXD图以及样品PP1 (c) 和PP2 (d)在不同增压速率下的相含量变化

    Figure  4.  One-dimensional WAXD patterns of sample PP1 (a) and PP2 (b), and the corresponding phase content changes of sample PP1 (c) and PP2 (d) at different pressurization rates

    图  不同压力和增压速率下样品PP1和PP2的结晶情况

    Figure  5.  Crystallization of sample PP1 and PP2 at different pressures and pressurization rates

    图  增压法制备的中间相样品 (a)和γ相样品 (b) 的DSC升温曲线以及相应的中间相样品的刚性非晶部分的玻璃化转变温度(Tg)、冷结晶温度(Tmeso-α)和熔融温度(c)和 γ相样品的熔融温度 (d)

    Figure  6.  DSC heating curves of mesophase samples (a) and γ-phase samples (b) prepared by pressurization method, and corresponding the glass transition temperature of rigid amorphous fraction (Tg), cold crystallization temperature (Tmeso-α) and melting temperature of mesophase samples (c) and melting temperature of γ-phase samples (d)

  • [1] SANGRONIZ L, VAN DRONGELEN M, CARDINAELS R, et al. Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites [J]. Polymer, 2020, 186: 121950. doi: 10.1016/j.polymer.2019.121950
    [2] 李亚, 周坚, 王宗宝, 等. 在高压CO2中聚乙二醇-聚己内酯嵌段共聚物的结晶行为 [J]. 高分子学报, 2015(3): 284–289.

    LI Y, ZHOU J, WANG Z B, et al. Crystallization behavior of poly(ethylene oxide)-b-poly(ε-caprolactone) under high pressure CO2 [J]. Acta Polymerica Sinica, 2015(3): 284–289.
    [3] ZHANG L, ZHAO G Q, WANG G L. Investigation of the influence of pressurized CO2 on the crystal growth of poly(L-lactic acid) by using an in situ high-pressure optical system [J]. Soft Matter, 2019, 15(28): 5714–5727. doi: 10.1039/C9SM00737G
    [4] ZHANG L, ZHAO G Q, WANG G L. Investigation on the growth of snowflake-shaped poly(L-lactic acid) crystal by in-situ high-pressure microscope [J]. Polymer, 2019, 177: 25–34. doi: 10.1016/j.polymer.2019.05.061
    [5] DONG B B, YANG X K, JI Y X, et al. Polymorph selection during melt crystallization of the isotactic polybutene-1 homopolymer depending on the melt state and crystallization pressure [J]. Soft Matter, 2020, 16(39): 9074–9082. doi: 10.1039/D0SM01231A
    [6] ZHANG X X, YANG S G, ZHONG G J, et al. Rapid melt crystallization of bisphenol-a polycarbonate jointly induced by pressure and flow [J]. Macromolecules, 2021, 54(5): 2383–2393. doi: 10.1021/acs.macromol.0c02208
    [7] 王彪, 郑友进, 贾晓鹏, 等. 高压下尼龙1010-单壁碳纳米管复合材料的结晶行为 [J]. 高压物理学报, 2012, 26(1): 33–40.

    WANG B, ZHENG Y J, JIA X P, et al. Crystallization behavior of polyamide 1010-single-walled carbon nanotube nanocomposites under high pressure [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 33–40.
    [8] LIU X R, ZHANG L J, YUAN C S, et al. A study of the pressure-induced solidification of polymers [J]. Polymers, 2018, 10(8): 847. doi: 10.3390/polym10080847
    [9] SONG Y N, ZHAO Q X, YANG S G, et al. Flow-induced crystallization of polylactide stereocomplex under pressure [J]. Journal of Applied Polymer Science, 2018, 135(25): 46378. doi: 10.1002/app.46378
    [10] ZHANG X X, YANG S G, HUA W Q, et al. Role of pressure in flow-induced shish-kabab in binary blend of long- and short-chain polyethylenes [J]. Polymer Crystallization, 2019, 2(3): e10059.
    [11] GEIL P H, ANDERSON F R, WUNDERLICH B, et al. Morphology of polyethylene crystallized from the melt under pressure [J]. Journal of Polymer Science Part A: General Papers, 1964, 2(8): 3707–3720. doi: 10.1002/pol.1964.100020829
    [12] YANG S G, MA Z, LEI J, et al. A criterion for flow-induced oriented crystals in isotactic polypropylene under pressure [J]. Macromolecular Rapid Communications, 2017, 38(23): 1700407. doi: 10.1002/marc.201700407
    [13] FU X B, JIA W X, LI X T, et al. Phase transitions of the rapid-compression-induced mesomorphic isotactic polypropylene under high-pressure annealing [J]. Journal of Polymer Science Part B: Polymer Physics, 2019, 57(11): 651–661. doi: 10.1002/polb.24820
    [14] MEZGHANI K, PHILLIPS P J. The γ-phase of high molecular weight isotactic polypropylene: Ⅲ. the equilibrium melting point and the phase diagram [J]. Polymer, 1998, 39(16): 3735–3744. doi: 10.1016/S0032-3861(97)10121-5
    [15] VAN ERP T B, BALZANO L, SPOELSTRA A B, et al. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of shear and pressure [J]. Polymer, 2012, 53(25): 5896–5908. doi: 10.1016/j.polymer.2012.10.027
    [16] VAN DRONGELEN M, VAN ERP T B, PETERS G W M. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure [J]. Polymer, 2012, 53(21): 4758–4769. doi: 10.1016/j.polymer.2012.08.003
    [17] SINGH G, KAUR S, KOTHARI A V, et al. Studies on the influence of molecular weight and isotacticity of polypropylene on the formation of mesomorphic phase [J]. Journal of Applied Polymer Science, 2009, 113(5): 3181–3186. doi: 10.1002/app.29927
    [18] JIANG Q H, ZHAO Y, ZHANG C B, et al. In-situ investigation on the structural evolution of mesomorphic isotactic polypropylene in a continuous heating process [J]. Polymer, 2016, 105: 133–143. doi: 10.1016/j.polymer.2016.10.004
    [19] MILEVA D, ANDROSCH R, ZHURAVLEV E, et al. Temperature of melting of the mesophase of isotactic polypropylene [J]. Macromolecules, 2009, 42(19): 7275–7278. doi: 10.1021/ma901797b
    [20] ZHAO J C, WANG Z G, NIU Y H, et al. Phase transitions in prequenched mesomorphic isotactic polypropylene during heating and annealing processes as revealed by simultaneous synchrotron SAXS and WAXD technique [J]. Journal of Physical Chemistry B, 2012, 116(1): 147–153. doi: 10.1021/jp210499d
    [21] DE ROSA C, AURIEMMA F, DE BALLESTEROS O R, et al. Tailoring mechanical properties of isotactic polypropylene via crystallization of the mesophase and control of stereodefects concentration [J]. Macromolecular Chemistry and Physics, 2013, 214(17): 1951–1964. doi: 10.1002/macp.201300296
    [22] DE ROSA C, AURIEMMA F, DI GIROLAMO R, et al. Crystallization of the mesomorphic form and control of the molecular structure for tailoring the mechanical properties of isotactic polypropylene [J]. Journal of Polymer Science Part B: Polymer Physics, 2014, 52(10): 677–699. doi: 10.1002/polb.23473
  • 加载中
图(6)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  86
  • PDF下载量:  28
出版历程
  • 收稿日期:  2022-04-23
  • 修回日期:  2022-05-27
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回