弹簧质量系统在动量球撞击下的响应特性

莫晓磊 林玉亮 李钰钢

莫晓磊, 林玉亮, 李钰钢. 弹簧质量系统在动量球撞击下的响应特性[J]. 高压物理学报, 2022, 36(5): 054101. doi: 10.11858/gywlxb.20220566
引用本文: 莫晓磊, 林玉亮, 李钰钢. 弹簧质量系统在动量球撞击下的响应特性[J]. 高压物理学报, 2022, 36(5): 054101. doi: 10.11858/gywlxb.20220566
MO Xiaolei, LIN Yuliang, LI Yugang. Response Characteristics of Spring-Mass System under Impact of Momentum Ball[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054101. doi: 10.11858/gywlxb.20220566
Citation: MO Xiaolei, LIN Yuliang, LI Yugang. Response Characteristics of Spring-Mass System under Impact of Momentum Ball[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054101. doi: 10.11858/gywlxb.20220566

弹簧质量系统在动量球撞击下的响应特性

doi: 10.11858/gywlxb.20220566
基金项目: 国家自然科学基金(12072368)
详细信息
    作者简介:

    莫晓磊(1990-),男,硕士研究生,主要从事材料动态力学性能研究. E-mail:1048961171@qq.com

    通讯作者:

    林玉亮(1978-),男,博士,教授,博士生导师,主要从事爆炸与冲击动力学研究. E-mail:ansen_liang@163.com

  • 中图分类号: O383

Response Characteristics of Spring-Mass System under Impact of Momentum Ball

  • 摘要: 冲量是爆炸空气冲击波的重要威力参数,基于动量块的测试方法是获取冲量的途径之一。通过开展弹簧-质量块系统在动量球撞击下的响应特性研究,尝试将动量球的动量转换为弹簧的定量压缩位移。研究过程中,选定一种弹簧-质量块组合,通过开展聚甲醛、聚四氟乙烯、铝、钢4种不同动量球撞击试验,获得了弹簧-质量块压缩响应特性和动量转化效率。结果表明,在所试验的测试范围内,弹簧的最大压缩位移与动量球的加载速度线性相关,聚四氟乙烯动量球与弹簧-质量块系统耦合最稳定,适合作为冲击波冲量测试的转换载体。该系统可以为冲击波测量提供一种新方法。

     

  • 图  动量球碰撞弹簧-质量块系统

    Figure  1.  Momentum ball colliding with spring-mass system

    图  Ptfe球碰撞弹簧-质量块系统全过程和数据处理的标记

    Figure  2.  Ptfe ball impact spring-mass block system marking the whole process and data processing

    图  4种动量球撞击弹簧-质量块系统的位移-时间曲线

    Figure  3.  Displacement-time curves of momentum balls impacting spring-mass system

    图  动量球碰撞速度与弹簧最大压缩位移的关系

    Figure  4.  Relationship between loading velocity of momentum balls and maximum compression displacement of the spring

    图  不同加载速度下4种动量球的动量转化率

    Figure  5.  Momentum conversion rate of four kinds of momentum balls at different loading velocities

    图  Al球的二次撞击

    Figure  6.  Secondary impact of the aluminum sphere

    图  Steel球的二次撞击

    Figure  7.  Secondary impact of the steel ball

    图  Ptfe球撞击弹簧质量块系统

    Figure  8.  Ptfe ball hits the spring mass system

    图  不同Ptfe球加载速度下质量块位移时程曲线

    Figure  9.  Displacement-time history diagram of mass block under different loading velocities of Ptfe ball

    表  1  动量球参数

    Table  1.   Parameters of momentum ball

    MaterialShapeDiameter/mmρ/(g·cm−3)Mass/g
    AlSphere30.022.7138.27
    PomSphere30.021.3518.98
    SteelSphere30.017.91111.71
    PtfeSphere29.982.2030.25
    下载: 导出CSV

    表  2  弹簧参数

    Table  2.   Parameters of spring

    MaterialWire diameter/mmDiameter/mmHeight/mmTurnsShear modulus/GPaMass/g
    Spring steel2.2030100108027.85
    下载: 导出CSV

    表  3  质量块参数

    Table  3.   Parameters of mass block

    MaterialShapeDiameter/mmHeight/mmMass/g
    45 steelCylinder301050.50
    下载: 导出CSV

    表  4  不同工况下的实验结果

    Table  4.   Experimental results under different working conditions

    MaterialMass of ball/gMass of block/gv/(m·s−1)v1/(m·s−1)v2/(m·s−1)x/mm
    Ptfe30.2550.503.7702.0714.30
    Ptfe30.2550.504.3602.1315.40
    Ptfe30.2550.504.8202.6116.40
    Ptfe30.2550.505.9102.9819.60
    Ptfe30.2550.506.6403.3320.30
    Ptfe30.2550.507.3204.3124.60
    Ptfe30.2850.5010.77 06.2135.45
    Ptfe30.2850.5011.92 06.6139.37
    Ptfe30.2850.5013.43 07.4244.20
    Al38.2650.504.820.252.5715.70
    Al38.2650.507.251.473.9222.73
    Al38.3550.507.782.043.8623.95
    Al38.3550.508.812.723.7028.60
    Al38.3250.509.282.403.6728.23
    Al38.3250.509.702.624.5929.95
    Al38.3250.5010.02 2.934.6132.40
    Al38.3250.5011.37 3.355.2434.68
    Steel111.71 50.502.670.783.6619.80
    Steel111.71 50.502.930.913.8821.10
    Steel111.71 50.503.861.263.8525.27
    Steel111.71 50.504.862.066.2533.30
    Steel111.71 50.506.702.876.5541.10
    Steel111.71 50.507.132.746.3144.00
    Steel111.71 50.508.423.819.4055.30
    Steel111.71 50.509.664.0711.10 64.40
    Pom19.0750.504.11−1.28 2.0312.37
    Pom19.0750.504.70−1.74 2.3913.80
    Pom19.0750.508.36−3.38 4.4123.93
    Pom19.0750.509.07−3.97 4.8224.20
    下载: 导出CSV

    表  5  4种动量球动量转化率对比

    Table  5.   Comparison of momentum conversion rate of four kinds of momentum balls

    MaterialMomentum conversion range/%Average/%Stdev
    Steel40.01−61.9751.770.094
    Al26.72−70.2434.350.057
    Ptfe81.56−98.3090.050.057
    Pom97.88−99.5198.800.008
    下载: 导出CSV

    表  6  4种不同材料动量球加载下弹簧的压缩率

    Table  6.   Compressibility of the spring under 4 momentum ball loads

    MaterialLoading velocity/(m·s−1)Compression ratio/%Remark
    Steel2−1319−70A few more than 60%
    Al3−1312−37
    Ptfe3−1414−45
    Pom3−1111−25
    下载: 导出CSV
  • [1] 赵传荣, 孔德仁. 基于量纲分析的平面冲击波经验模型研究 [J]. 高压物理学报, 2016, 30(6): 526–530. doi: 10.11858/gywlxb.2016.06.014

    ZHAO C R, KONG D R. Empirical model of plane shock wave on the impact surface of target based on dimensional analysis [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 526–530. doi: 10.11858/gywlxb.2016.06.014
    [2] 孟令存, 闫明, 杜志鹏, 等. 外界条件对中空结构物内爆冲击波的影响 [J]. 高压物理学报, 2020, 34(4): 79–88. doi: 10.11858/gywlxb.20190849

    MENG L C, YAN M, DU Z P, et al. Influence of external conditions on implosion shock wave of hollow structure [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 79–88. doi: 10.11858/gywlxb.20190849
    [3] 郭炜, 俞统昌, 王建林. 空气冲击波压力的地面测量技术 [C]//第三届全国爆炸力学实验技术交流会. 合肥, 2004: 7.

    GUO W, YU T C, WANG J L. Surface measurement of air shock wave pressure [C]//The Third National Explosion Mechanics Experiment Technology Exchange Conference. Hefei, 2004: 7
    [4] 翟永. 冲击波存储测试系统的同步技术研究 [D]. 太原: 中北大学, 2016: 18−19.

    ZHAI Y. Research on synchronization technology of stored testing system for shock wave [D]. Taiyuan: North University of China, 2016: 18−19.
    [5] 叶希洋, 苏健军, 姬建荣. 冲击波测试效应靶法综述 [J]. 兵器装备工程学报, 2019, 40(12): 55−61, 124.

    YE X Y, SU J J, JI J R. Review of effect target method for shock wave measurement [J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 55−61, 124.
    [6] CLOETE T J, NURICK G N, PALMER R N. The deformation and shear failure of peripherally clamped centrally supported blast loaded circular plates [J]. International Journal of Impact Engineering, 2005, 32(1): 92–117. doi: 10.1016/j.ijimpeng.2005.06.002
    [7] 仲倩. 燃料空气炸药爆炸参数测量及毁伤效应评估 [D]. 南京: 南京理工大学, 2012: 15.

    ZHONG Q. Research on measurement of explosion parameters and evaluation of damage effect of fuel air explosive [D]. Nanjing: Nanjing University of Science and Technology, 2012: 15.
    [8] MANFRED H. Momentum method to measure the blast contour [C]//17th International Symposium on Ballistics. Midrand, South Africa, 1998: 23−27.
    [9] 李钰钢. 基于动量块的冲击波比冲量测试装置 [D]. 长沙: 国防科技大学, 2021: 50−57.

    LI Y G. Research on shock wave impulse measurement method based on momentum block [D]. Changsha: National University of Defense Technology, 2021: 50−57.
    [10] WITTRICK W H. On elastic wave propagation in helical springs [J]. International Journal of Mechanical Sciences, 1966, 8(1): 25–47. doi: 10.1016/0020-7403(66)90061-0
    [11] PHILLIPS J W, COSTELLO G A. Large deflections of impacted helical springs [J]. The Journal of the Acoustical Society of America, 1972, 51(3B): 967–973. doi: 10.1121/1.1912946
    [12] COSTELLO G A. Radial expansion of impacted helical springs [J]. Journal of Applied Mechanics, 1975, 42(4): 789–792. doi: 10.1115/1.3423707
    [13] SINHA S K, COSTELLO G A. The numerical solution of the dynamic response of helical springs [J]. International Journal for Numerical Methods in Engineering, 1978, 12(6): 949–961. doi: 10.1002/nme.1620120607
    [14] 赵宗昌, 何水清, 何大同, 等. 螺旋弹簧质量系统动态响应的特征线法[J]. 哈尔滨工程大学学报, 1989(1): 62−73.

    ZHAO Z C, HE S Q, HE D T, et al. The characteristics method of the dynamic response of the spring-mass systems[J]. Journal of Harbin Shipbuilding Engineering Institute, 1989(1): 62−73.
    [15] 薛瑞娟, 郭敬彬, 王君, 等. 环形弹簧静刚度与冲击性能有限元分析 [J]. 舰船科学技术, 2018, 40(10): 67–71. doi: 10.3404/j.issn.1672-7649.2018.10.013

    XUE R J, GUO J B, WANG J, et al. Finite element analysis of static stiffness and shock performance of ring spring [J]. Ship Science and Technology, 2018, 40(10): 67–71. doi: 10.3404/j.issn.1672-7649.2018.10.013
    [16] 赵亚敏, 崔俊宁, 邹丽敏, 等. 约束膜式空气弹簧的刚度建模与分析 [J]. 振动与冲击, 2022, 41(1): 60−67, 115.

    ZHAO Y M, CUI J N, ZOU L M, et al. Stiffness modeling and analysis of constrained membrane air spring [J]. Journal of Vibration and Shock, 2022, 41(1): 60−67, 115.
    [17] 张英会, 刘辉航, 王德成. 弹簧手册 [M]. 北京: 机械工业出版社, 2017: 389.

    ZHANG Y H, LIU H H, WANG D C. Spring manual [M]. Beijing: China Machine Press, 2017: 389.
    [18] 盛宏玉. 结构动力学 [M]. 合肥: 合肥工业大学出版社, 2012: 17−19.

    SHENG H Y. Structural dynamics [M]. Hefei: Hefei University of Technology Press, 2012: 17−19.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  68
  • PDF下载量:  36
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-05-09
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回