上土下岩地层中平面SH波的传播特性分析

周俊 石文革 董玉飞 路世伟 杜国锋 刘洪宇

周俊, 石文革, 董玉飞, 路世伟, 杜国锋, 刘洪宇. 上土下岩地层中平面SH波的传播特性分析[J]. 高压物理学报, 2022, 36(6): 062302. doi: 10.11858/gywlxb.20220564
引用本文: 周俊, 石文革, 董玉飞, 路世伟, 杜国锋, 刘洪宇. 上土下岩地层中平面SH波的传播特性分析[J]. 高压物理学报, 2022, 36(6): 062302. doi: 10.11858/gywlxb.20220564
ZHOU Jun, SHI Wenge, DONG Yufei, LU Shiwei, DU Guofeng, LIU Hongyu. Analysis of Propagation Characteristics of SH Waves in Upper Soil and Lower Rock Strata[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062302. doi: 10.11858/gywlxb.20220564
Citation: ZHOU Jun, SHI Wenge, DONG Yufei, LU Shiwei, DU Guofeng, LIU Hongyu. Analysis of Propagation Characteristics of SH Waves in Upper Soil and Lower Rock Strata[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062302. doi: 10.11858/gywlxb.20220564

上土下岩地层中平面SH波的传播特性分析

doi: 10.11858/gywlxb.20220564
基金项目: 国家自然科学基金(41972286);湖北省自然科学基金(2019CFB224);湖北省教育厅科学研究计划项目(Q201913308);荆州市科技计划项目(2019Z18001)
详细信息
    作者简介:

    周 俊(1971-),男,学士,高级工程师,主要从事市政及地下工程研究. E-mail:415655148@qq.com

    通讯作者:

    路世伟(1989-),男,博士,副教授,主要从事爆破工程研究. E-mail:lushiwei364@163.com

  • 中图分类号: O382; O521.9

Analysis of Propagation Characteristics of SH Waves in Upper Soil and Lower Rock Strata

  • 摘要: 为研究爆破地震波在层状地层的传播规律,选取平面SH(水平剪切)波作为研究对象,基于弹性波动理论,建立了一般层状地层的刚度矩阵和动力平衡方程,分析了土层与基岩的阻抗比、土层厚度、入射波频率和入射波角度对地表速度与土岩地层界面速度的比值(|u1/u2|)的影响。结果表明:|u1/u2|的各个峰值随着入射波频率的增大而减小,且第2个峰值明显小于第1个峰值,实际工程中应重点关注土层的一阶卓越频率;随着土层阻抗的增大,高频部分的响应越来越强烈,且受入射角的影响也越来越大;当土层较薄时,|u1/u2|高频部分的响应比较明显,但随着土层厚度增加,高频部分的响应越来越小,说明土层的高频滤波作用随着厚度的增加而增强。

     

  • 图  层状地层的局部坐标系

    Figure  1.  Local coordinate system for a stratified stratum

    图  半无限基岩上层状地层示意图

    Figure  2.  Schematic diagram of stratified strata on semi-infinite bedrocks

    图  总刚度矩阵组装过程

    Figure  3.  Assembly process of total stiffness matrix

    图  上土下岩地层示意图

    Figure  4.  Schematic diagram of the upper soil and lower rock stratigraphy

    图  不同阻抗条件下入射角对$ {\text{|}}{u_1}{\text{/}}{u_2}{\text{|}} $-f曲线的影响

    Figure  5.  Influence of incident angles on the $ {\text{|}}{u_1}{\text{/}}{u_2}{\text{|}} $-f curves under different impedances

    图  Z=0.19时不同厚度土层下入射角对 $ {\text{|}}{u_1}{\text{/}}{u_2}{\text{|}} $-f 曲线的影响

    Figure  6.  Effects of incident angle on the $ {\text{|}}{u_1}{\text{/}}{u_2}{\text{|}} $-f curves under different thicknesses of soil layers when Z=0.19

    图  Z=0.70时不同厚度土层下入射角对 $ {\text{|}}{u_1}{\text{/}}{u_2}{\text{|}} $-f 曲线的影响

    Figure  7.  Effects of incident angle on the $ \left| {{u_1}{\text{/}}{u_2}} \right| $-f curves under different thicknesses of soil layers when Z=0.70

  • [1] 张永兴, 张远华. 隧道爆破开挖条件下地表建筑振动速度响应研究 [J]. 地震工程与工程振动, 2010, 30(6): 112–119. doi: 10.13197/j.eeev.2010.06.007

    ZHANG Y X, ZHANG Y H. Research on vibration velocity responses of surface building under the condition of blasting excavation in tunnel [J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(6): 112–119. doi: 10.13197/j.eeev.2010.06.007
    [2] 路世伟. 露天转地下开采边坡爆破振动传播特性及安全判据研究 [D]. 武汉: 中国地质大学(武汉), 2017.

    LU S W. Propagation characteristics of blasting vibration in slopes subjected to open-pit to underground mining and safety criterion [D]. Wuhan: China University of Geosciences (Wuhan), 2017.
    [3] 胡国忠. 城市地下工程爆破的地面爆破震动效应及其震动强度预测 [D]. 重庆: 重庆大学, 2005.

    HU G Z. Forecast on intensity of vibration and study on effect of ground blast induced vibration of underground engineering in city [D]. Chongqing: Chongqing University, 2005.
    [4] 王玉杰, 梁开水, 田新邦. 周宁水电站地下厂房开挖爆破地震波衰减规律的研究 [J]. 岩石力学与工程学报, 2005, 24(22): 4111–4114. doi: 10.3321/j.issn:1000-6915.2005.22.017

    WANG Y J, LIANG K S, TIAN X B. Study on redundant regulation of underground digging blasting vibration of Zhouning hydropower station [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(22): 4111–4114. doi: 10.3321/j.issn:1000-6915.2005.22.017
    [5] 董永香, 黄晨光, 段祝平. 多层介质对应力波传播特性影响分析 [J]. 高压物理学报, 2005, 19(1): 59–65. doi: 10.11858/gywlxb.2005.01.011

    DONG Y X, HUANG C G, DUAN Z P. Analysis on the influence of multi-layered media on stress wave propagation [J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 59–65. doi: 10.11858/gywlxb.2005.01.011
    [6] SMERZINI C, AVILÉS J, PAOLUCCI R, et al. Effect of underground cavities on surface earthquake ground motion under SH wave propagation [J]. Earthquake Engineering & Structural Dynamics, 2009, 38(12): 1441–1460. doi: 10.1002/eqe.912
    [7] 王猛, 马天宝, 宁建国. 炸药混凝土中爆炸能量释放规律的研究 [J]. 高压物理学报, 2012, 26(5): 517–522. doi: 10.11858/gywlxb.2012.05.006

    WANG M, MA T B, NING J G. Research of energy release law of explosive blasting in concrete [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 517–522. doi: 10.11858/gywlxb.2012.05.006
    [8] 王超, 周传波, 路世伟, 等. 城市暗挖隧道爆破地震波传播规律研究 [J]. 科学技术与工程, 2017, 17(6): 158–162. doi: 10.3969/j.issn.1671-1815.2017.06.028

    WANG C, ZHOU C B, LU S W, et al. Propagation pattern of blasting vibration in the surrounding rock of metro tunnel [J]. Science Technology and Engineering, 2017, 17(6): 158–162. doi: 10.3969/j.issn.1671-1815.2017.06.028
    [9] 张震, 周传波, 路世伟, 等. 超浅埋地铁站通道爆破暗挖地表振动传播特征 [J]. 中南大学学报(自然科学版), 2017, 48(8): 2119–2125. doi: 10.11817/j.issn.1672-7207.2017.08.020

    ZHANG Z, ZHOU C B, LU S W, et al. Propagation characteristics of ground vibration induced by subsurface blasting excavation in an ultra-shallow buried underpass [J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2119–2125. doi: 10.11817/j.issn.1672-7207.2017.08.020
    [10] 高文学, 颜鹏程, 李志星, 等. 浅埋隧道爆破开挖及其振动效应研究 [J]. 岩石力学与工程学报, 2011, 30(Suppl 2): 4153–4157.

    GAO W X, YAN P C, LI Z X, et al. Blasting excavation and vibration effects of shallow tunnel excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl 2): 4153–4157.
    [11] 汪平, 吉凌. 浅埋地铁隧道爆破振动速度传播规律及预测 [J]. 工程爆破, 2021, 27(2): 108–113, 134. doi: 10.19931/j.EB.20200222

    WANG P, JI L. Propagation law and prediction of blasting vibration velocity of shallow buried subway tunnel [J]. Engineering Blasting, 2021, 27(2): 108–113, 134. doi: 10.19931/j.EB.20200222
    [12] 陈学军, 余思喆, 宋宇, 等. 采矿爆破振动波在岩溶区的传播影响因素分析 [J]. 地质力学学报, 2018, 24(5): 692–698. doi: 10.12090/j.issn.1006-6616.2018.24.05.070

    CHEN X J, YU S Z, SONG Y, et al. Analysis of factors influencing the propagation of mining blasting vibration wave in karst area [J]. Journal of Geomechanics, 2018, 24(5): 692–698. doi: 10.12090/j.issn.1006-6616.2018.24.05.070
    [13] JAYASINGHE B, ZHAO Z Y, CHEE A G T, et al. Attenuation of rock blasting induced ground vibration in rock-soil interface [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 770–778. doi: 10.1016/j.jrmge.2018.12.009
    [14] 朱斌, 蒋楠, 贾永胜, 等. 下穿燃气管道爆破振动效应现场试验研究 [J]. 岩石力学与工程学报, 2019, 38(12): 2582–2592. doi: 10.13722/j.cnki.jrme.2019.0183

    ZHU B, JIANG N, JIA Y S, et al. Field experiment on blasting vibration effect of underpass gas pipelines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2582–2592. doi: 10.13722/j.cnki.jrme.2019.0183
    [15] 高启栋, 卢文波, 冷振东, 等. 考虑爆源特征的岩石爆破诱发地震波的波型与组分分析 [J]. 岩土力学, 2021, 42(10): 2830–2844. doi: 10.16285/j.rsm.2021.0108

    GAO Q D, LU W B, LENG Z D, et al. Analysis of wave-type and seismic component induced by rock blasting considering source characteristics [J]. Rock and Soil Mechanics, 2021, 42(10): 2830–2844. doi: 10.16285/j.rsm.2021.0108
    [16] 王秉相, 程普锋, 郑宇轩, 等. 应力波在散体颗粒中的传播规律 [J]. 高压物理学报, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508

    WANG B X, CHENG P F, ZHENG Y X, et al. Attenuation law of stress wave in granular particles [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508
    [17] 王桂林, 欧阳啸天, 翟俊, 等. 浅埋三舱管廊甲烷爆炸的地面响应规律 [J]. 高压物理学报, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616

    WANG G L, OUYANG X T, ZHAI J, et al. Ground response law of methane explosion in shallow buried three-cabin pipe gallery [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
    [18] WOLF J P. Dynamic soil-structure interaction [M]. Englewood Cliffs: Prentice-Hall, 1985.
    [19] 周俊汝. 爆破地震波传播过程中振动主频的衰减规律研究 [D]. 武汉: 武汉大学, 2017.

    ZHOU J R. Study on attenuation of dominant frequency of blast-induced vibration [D]. Wuhan: Wuhan University, 2017.
  • 加载中
图(7)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  117
  • PDF下载量:  33
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-09-27
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回