上土下岩地层中平面SH波的传播特性分析

周俊 石文革 董玉飞 路世伟 杜国锋 刘洪宇

姚永永, 苏步云, 肖革胜, 许海涛, 树学峰. 内凹负泊松比蜂窝结构的面内双轴冲击响应[J]. 高压物理学报, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
引用本文: 周俊, 石文革, 董玉飞, 路世伟, 杜国锋, 刘洪宇. 上土下岩地层中平面SH波的传播特性分析[J]. 高压物理学报, 2022, 36(6): 062302. doi: 10.11858/gywlxb.20220564
YAO Yongyong, SU Buyun, XIAO Gesheng, XU Haitao, SHU Xuefeng. In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
Citation: ZHOU Jun, SHI Wenge, DONG Yufei, LU Shiwei, DU Guofeng, LIU Hongyu. Analysis of Propagation Characteristics of SH Waves in Upper Soil and Lower Rock Strata[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062302. doi: 10.11858/gywlxb.20220564

上土下岩地层中平面SH波的传播特性分析

doi: 10.11858/gywlxb.20220564
基金项目: 国家自然科学基金(41972286);湖北省自然科学基金(2019CFB224);湖北省教育厅科学研究计划项目(Q201913308);荆州市科技计划项目(2019Z18001)
详细信息
    作者简介:

    周 俊(1971-),男,学士,高级工程师,主要从事市政及地下工程研究. E-mail:415655148@qq.com

    通讯作者:

    路世伟(1989-),男,博士,副教授,主要从事爆破工程研究. E-mail:lushiwei364@163.com

  • 中图分类号: O382; O521.9

Analysis of Propagation Characteristics of SH Waves in Upper Soil and Lower Rock Strata

  • 摘要: 为研究爆破地震波在层状地层的传播规律,选取平面SH(水平剪切)波作为研究对象,基于弹性波动理论,建立了一般层状地层的刚度矩阵和动力平衡方程,分析了土层与基岩的阻抗比、土层厚度、入射波频率和入射波角度对地表速度与土岩地层界面速度的比值(|u1/u2|)的影响。结果表明:|u1/u2|的各个峰值随着入射波频率的增大而减小,且第2个峰值明显小于第1个峰值,实际工程中应重点关注土层的一阶卓越频率;随着土层阻抗的增大,高频部分的响应越来越强烈,且受入射角的影响也越来越大;当土层较薄时,|u1/u2|高频部分的响应比较明显,但随着土层厚度增加,高频部分的响应越来越小,说明土层的高频滤波作用随着厚度的增加而增强。

     

  • 负泊松比蜂窝结构又称拉胀结构,因具有许多常规结构不具备的力学特性[1],而成为研究热点。蜂窝材料具有较高的相对刚度、强度和高效的能量吸收能力,在抗剪切、抗屈曲、提高硬度以及抗疲劳等方面拥有独特的优越性[2-3],在一些应用领域中发挥着关键作用,如汽车、航空、军事、医学领域[4]。多孔结构的力学性能主要取决于细观上的拓扑结构。近年来,通过改变细观结构,人们发现负泊松比结构具有很多特殊优势,因而被广泛应用[5]

    马芳武等[6]研究了一种内凹三角形负泊松比结构,通过改变内凹角度,分析了冲击端和固定端的平台应力和能量吸收能力,并与内凹六边形进行了对比。Zhang等[7]分析了内凹六边形蜂窝在两个正交方向上的后继屈服拉伸行为,同时考虑结构的塑性影响以及孔壁的非线性行为分析模型,提出了单胞结构的塑性铰变形机制,得到了单胞结构的应力-应变曲线。Li等[8-9]对内凹蜂窝结构进行分级、强化,并将正弦曲线引入内凹蜂窝结构,得到了新的改进模型,进而分析了结构的泊松比和能量吸收变化。邓小林等[10]研究了全参数化的正弦曲线蜂窝结构,以不同振幅、不同厚度建立模型,研究了蜂窝结构在不同冲击速度下的动力响应,发现正弦曲线蜂窝较常规六边形蜂窝有更好的能量吸收效果。崔世堂等[11]利用有限元模拟方法研究了负泊松比蜂窝结构面内冲击动力学特性,发现平台应力和结构的比吸能随冲击速度的增大而增高,随胞元扩展角的增大而降低。陈鹏等[12]研究了具有零泊松比特征的半凹角蜂窝结构,并将其与正六边形蜂窝和内凹负泊松比蜂窝在面内冲击荷载作用下的抗冲击性能进行对比分析,数值结果表明,半凹角蜂窝的抗冲击性能介于正六边形蜂窝和内凹蜂窝之间。Hu等[13]通过理论分析和数值模拟,研究了内凹角度和壁长对内凹负泊松比蜂窝在大变形下的单轴动态冲击性能的影响,推导出冲击过程中平均冲击应力的经验公式。Zhang等[14]通过有限元模拟,研究了内凹蜂窝x方向的平面内动态冲击行为,发现内凹蜂窝的面内动态性能不仅与冲击速度和边缘厚度有关,还受蜂窝壁角的影响。Li等[15]通过单轴和双轴压缩模拟以及理论分析,研究了正六边形蜂窝结构的面内压缩动态力学性能,分析了双轴压缩的变形模式,结果表明:相比单轴冲击,双轴冲击下在xy方向的真实应力增强,能量吸收能力也得到了提高,且完全致密化阶段比单轴压缩阶段更平滑。此外,Li等[16]研究了六边形、内凹、混合3种蜂窝模型在单、双轴冲击下的面内动态力学性能,结果表明:正交双轴冲击下,六边形蜂窝表现出3种变形模式,内凹和混合型蜂窝没有明显的过渡模式,由于负泊松比效应的影响,内凹蜂窝具有较差的耗能能力。

    值得注意的是,自然界中的蜂窝结构和人造蜂窝结构在细观上总存在一定的缺陷,从而引起结构的不规则性,力学性能也会发生一定的变化。Ajdari等[17]通过数值模拟研究了正六边形和不规则二维蜂窝的平面内动态冲击问题,分析了孔壁缺失和空间扰动形成的结构微观不规则性对力学性能的影响。Alkhader等[18]用函数定义六边形蜂窝、随机Voronoi泡沫以及正方形和三角形拓扑结构等多种二维拓扑结构的不规则程度,以研究其单轴压缩响应,结果表明,相对于以弯曲为主的结构,以拉伸为主的结构有表现出灾难性屈服后软化反应的趋势,而不规则性则会导致更多的弯曲现象。Liu等[19]对内凹蜂窝材料的面内动态冲击过程进行了数值模拟,并在此基础上定义了内凹蜂窝结构的不规则性,分析发现,在准静态下不规则的内凹蜂窝比规则的正六边形蜂窝能吸收更多的能量,但这种情况在高速撞击下逆转。Zheng等[20]通过数值模拟研究了坐标扰动和Voronoi随机模型两种不规则模型与正六边形蜂窝在不同冲击速度下的变形模式和平台冲击力,得到不规则性结构更具复杂性的结论。Zhu等[21]研究了孔的不规则性对二维随机泡沫弹性性能的影响,构造了不规则度不同的周期性随机结构,并通过数值模拟确定了其有效弹性性能,结果表明,二维随机泡沫体形状越不规则,有效弹性模量和剪切模量越大,在一定的压比相对密度下,体积模量越小。

    综上所述,实际中蜂窝结构往往是不规则的,且易受双轴冲击载荷作用。而关于不规则结构在双轴冲击下的研究较少,为此本工作将针对不规则内凹负泊松比蜂窝结构在双轴冲击下的面内冲击响应,分析规则度和冲击速度对结构变形影响的规律。

    采用如图1所示的节点扰动方法来建立不规则内凹蜂窝的有限元模型。

    图  1  坐标扰动
    Figure  1.  Coordinate perturbation

    图1所示,将规则的内凹六边形蜂窝结构的每个节点按照式(1)中的方法进行随机扰动

    {yi=y0+Δysinθmxi=x0+Δxcosθm
    (1)

    式中:θm为角度随机值(0θm360),x0y0为节点的原始坐标,xiyi为扰动后的节点坐标。为了保证随机扰动之后模型的棱壁不会重叠,需要对ΔxΔy进行如式(2)的限制

    {μ=Δx2+Δy20μμm
    (2)

    式中:μ为节点扰动的随机长度;μm为扰动的最大长度,0μml1/2。内凹负泊松比蜂窝结构的不规则度可以定义为

    K=2μml1
    (3)

    式中:l1为规则蜂窝结构的最短棱壁长度。

    假设蜂窝结构所有棱壁的厚度均相同,则可通过改变棱壁的厚度来调节蜂窝结构的相对密度。本研究采用15%的相对密度进行分析,图2显示了部分模型。

    图  2  不规则蜂窝模型的建立
    Figure  2.  Establishment of irregular honeycomb model

    图2中内凹蜂窝结构的相对密度Δρ可以表示为

    Δρ=ρρs=Ni=1li×tL1×L2
    (4)

    此外,对于规则的内凹负泊松比蜂窝,其相对密度Δρr也可以表示为

    Δρr=12tl1(l2/l1+2)cosα(l2/l1+sinα)
    (5)

    式中:ρ为模型的密度,ρs为基体材料的密度,li为各个孔壁的长度,t为孔壁的厚度,N为孔壁的数量,L1L2为整个蜂窝结构的长度和宽度,l2为规则蜂窝结构的最长棱壁长度。

    采用ABAQUS/EXPLICIT软件进行分析。模型的边界条件设置:在两个正交方向上,将模型置于两块刚性板之间、底部刚性板之上,底部和左端的刚性板作为固定端, 顶部和右端作为冲击端,冲击速度为3~100 m/s,同时约束内凹蜂窝结构的面内自由度,如图3所示。建立的内凹蜂窝结构的主要参数为L1 = 129.9 mm, L2 = 120.0 mm, l1 = 5 mm, l2 = 10 mm,θ = 60°。由于蜂窝铝具有高强度和高刚度的良好力学性能,本研究采用铝合金作为基体材料,主要参数为:密度ρ = 2700 kg/m3,弹性模量E = 72 GPa,泊松比为0.33,屈服强度σy = 103 MPa,并采用线性强化模型,图4为结构基体材料的本构关系,其中Et为切线模量,σs为线性强化模型的屈服强度。蜂窝细胞数量为15 × 15,可保证材料不受尺寸效应的影响。所有单元均采用4节点壳单元进行网格划分,网格单元尺寸为0.5 mm,节点数为28660,网格数为 19 540,建立无摩擦和通用接触。

    图  3  双轴加载模型的边界条件
    Figure  3.  Boundary conditions for the biaxial loading model
    图  4  基体材料的本构关系
    Figure  4.  Constitutive relation of the matrix material

    为了对双轴冲击条件进行分类,采用与双轴冲击有关的参数λ,表达式为λ=vx/vy,其中vxvy分别为 xy 方向的冲击速度。这里只讨论 λ=1 的情况,显然 λ=1 时为等双轴冲击。首先研究了不同规则度(K = 0, 0.6, 1.0)的内凹负泊松比在不同冲击速度(6、50和100 m/s)下的变形模式。图5图6图7给出了内凹蜂窝结构的结构变形情况。需要说明的是,为更好地展示变形结果,每隔约10%的应变截取一张变形模态图,同时为了清晰、规律地显示图像,所有图形都设置了相同的大小。

    图  5  K = 0时不同冲击速度下的变形模态
    Figure  5.  Deformation modes under different impact velocities at K = 0
    图  6  K = 0.6时不同冲击速度下的变形模态
    Figure  6.  Deformation modes under different impact velocities at K = 0.6
    图  7  K = 1.0时不同冲击速度下的变形模态
    Figure  7.  Deformation modes under different impact velocities at K = 1.0

    图5可以看出,对于规则的内凹蜂窝,在等双轴低速冲击过程中,结构首先在交叉处棱壁堆积,从而使内部先形成四边形,结构整体的变形在近端和远端都较均匀。这与文献[15]中内凹蜂窝的变形是一致的,也验证了本模型的有效性。持续的压缩使孔壁进一步堆积形成局部致密化,结构的致密过程主要是局部致密。由于负泊松比效应的影响,材料在一个方向受压时,其另一个正交方向会出现颈缩。因此,在双向冲击受压的情况下,结构会更早进入完全密实阶段。随着冲击速度的增大,结构从冲击端(上部和右端)开始密实,而固定端几乎没有变形。随着应变增加,致密向固定端传递,直至完全进入密实化。从图5中第2行和第3行图像还可以看出,随着冲击速度的增大,蜂窝结构的下端会产生部分“翘起”现象,这是由于负泊松比效应的影响会导致结构颈缩,且结构与固定端端部是无绑定约束,从而造成这类现象。

    与规则蜂窝不同的是,不规则蜂窝结构在低速冲击下,其内部不会形成较为规则的四边形。这是由于不规则度的存在使结构棱壁处的堆叠也变得不规则。此外,从图5图7ε=0.5 列可以看出,由于不规则度的引入,结构的变形模式由局部密实转变为整体密实,从而使内凹蜂窝结构在相同压缩程度下,密实化程度明显降低。在高速冲击下(v = 100 m/s),从图5图7中可以看出,不规则程度越高,冲击端的致密程度越大。这是因为高速冲击下,结构在冲击端的密实主要是棱壁的弯曲折叠过程,随着不规则度的增加,棱壁的弯曲折叠受到的约束增大,向固定端传递的速度也会降低,所以不规则蜂窝结构的密实过程会更长,而在冲击端密实程度也会更高。此外,从图6图7ε=0.6v = 100 m/s对应的变形情况可以看出,固定端还有尚未变形进入密实的孔,说明不规则蜂窝结构具有较长的平台阶段,能够承受更大的压缩变形。

    图8图9给出了蜂窝结构在双轴冲击下两个正交方向冲击端的名义应力-应变曲线,其中名义应力σ通过冲击端的反力除以对应截面的原始面积获得,名义应变ε通过冲击位移除以对应的原长获得。从图中可以看出,内凹蜂窝结构在不同方向上的σ-ε曲线均表现出典型多孔材料在受压时所具有的弹性阶段、平台阶段和密实阶段3部分。

    图  8  蜂窝结构在不同冲击速度下x方向的应力-应变曲线
    Figure  8.  Stress-strain curves of honeycomb structure in x direction under different impact velocities
    图  9  蜂窝结构在不同冲击速度下y方向上的应力-应变曲线
    Figure  9.  Stress-strain curves of honeycomb structure in y direction under different impact velocities

    图8图9v = 6 m/s时的曲线可以看出,对于K = 0时的应力-应变曲线,在应变接近0.4处,结构变形的平台阶段均出现一个上升的阶梯,并且x方向最明显。结合2.1节关于变形模态的分析,认为这主要是由于在等低速双轴冲击下内凹蜂窝结构变形主要经历两种棱壁堆叠过程,即堆叠形成四边形以及四边形的进一步弯曲堆叠。由于第1步的堆叠,棱壁基本不会屈曲,主要是旋转折叠,因此这一平台阶段的应力水平较低;第2步的堆叠主要是棱壁的屈曲折叠,所以此阶段的应力水平较高。从图8图9中也可以看出,K = 0时,结构会更早进入密实化阶段,而不规则度的引入使结构拥有较长的平台阶段,密实化阶段出现滞后现象,此现象与2.1节中变形模态的分析结果是一致的。随着冲击速度的增大,平台阶段的应力升高,说明结构的能量吸收能力随着冲击速度的增大而增强。

    蜂窝结构的平台应力一般表示为

    σp=1εdε0εdε0σ(ε)dε
    (6)

    式中:σp为平台应力;ε0为对应初始应力峰值的名义应变;εd为锁定应变,为蜂窝结构密实化阶段所对应的应变;σ(ε)为名义应力-应变曲线。

    图10给出了不规则度不同的内凹蜂窝结构在两个正交方向上不同冲击速度下的平台应力变化趋势。从图10可以看到:随着冲击速度的增大,两个方向上的平台应力值都会上升;对于K = 0的规则蜂窝结构,其在两个方向上的平台应力相差较大,这是结构的各向异性所导致的。引入不规则度时,在高速冲击下两个方向上的平台应力变化大小及趋势都较接近,说明结构的各向异性降低,这一点从2.1节内凹蜂窝结构的变形模态中也可以看出。

    图  10  不同冲击速度下不规则内凹蜂窝结构在xy方向的平台应力比较
    Figure  10.  Comparison of the plateau stress of irregular re-entrant honeycomb structures in x and y directions under different velocities

    在动态冲击过程中,能量主要由材料的塑性变形消耗。采用比塑性耗散能表征单位质量的能量吸收能力,表达式为

    W=EPEDM
    (7)

    式中:EPED为塑性耗散能,可以从有限元分析软件中直接获得;M为结构的质量。

    图11给出了内凹蜂窝结构在6、50和100 m/s 3种不同冲击速度下的比塑性能量耗散与 y 方向冲击应变的关系。从图11中可以看出,当应变较低时,比塑性耗散能W上升较缓慢,且所有曲线基本重合。这表明在早期,不规则度对内凹蜂窝结构的影响较小。随着压缩程度的增加,W增加的速率变大,且K = 0时,W增加得最快,表明结构开始进入密实阶段,这是由结构的负泊松比效应引起的。对于不规则蜂窝结构,曲线上升得较缓慢,表明不规则度的引入使结构的平台阶段延长,结构具有更强的能量吸收能力。

    图  11  蜂窝结构在不同冲击速度下的比塑性耗散能曲线
    Figure  11.  Specific plastic dissipation energy curves of honeycomb structure at different impact velocities

    采用有限元方法研究了具有不同不规则度内凹负泊松比结构的面内双轴冲击响应,得到了以下结论。

    (1)内凹蜂窝结构的变形受冲击速度的影响。随着冲击速度的提高,蜂窝结构的变形逐渐转向逐层致密,受结构负泊松比效应的影响,在等高速双轴压缩时,结构的固定端会有局部“翘起”现象。此外,由于不规则度的引入,在低速冲击下,结构的密实化过程从局部致密转变为整体致密,从而导致在相同的压缩程度下,结构的密实化程度降低。

    (2)随着冲击速度的增大,平台阶段的应力上升,能量吸收能力更强,比塑性耗散能也上升。不规则度的引入延长了平台阶段,降低了结构的各向异性程度,从而提高了结构的能量吸收能力。

  • 图  层状地层的局部坐标系

    Figure  1.  Local coordinate system for a stratified stratum

    图  半无限基岩上层状地层示意图

    Figure  2.  Schematic diagram of stratified strata on semi-infinite bedrocks

    图  总刚度矩阵组装过程

    Figure  3.  Assembly process of total stiffness matrix

    图  上土下岩地层示意图

    Figure  4.  Schematic diagram of the upper soil and lower rock stratigraphy

    图  不同阻抗条件下入射角对|u1/u2|-f曲线的影响

    Figure  5.  Influence of incident angles on the |u1/u2|-f curves under different impedances

    图  Z=0.19时不同厚度土层下入射角对 |u1/u2|-f 曲线的影响

    Figure  6.  Effects of incident angle on the |u1/u2|-f curves under different thicknesses of soil layers when Z=0.19

    图  Z=0.70时不同厚度土层下入射角对 |u1/u2|-f 曲线的影响

    Figure  7.  Effects of incident angle on the |u1/u2|-f curves under different thicknesses of soil layers when Z=0.70

  • [1] 张永兴, 张远华. 隧道爆破开挖条件下地表建筑振动速度响应研究 [J]. 地震工程与工程振动, 2010, 30(6): 112–119. doi: 10.13197/j.eeev.2010.06.007

    ZHANG Y X, ZHANG Y H. Research on vibration velocity responses of surface building under the condition of blasting excavation in tunnel [J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(6): 112–119. doi: 10.13197/j.eeev.2010.06.007
    [2] 路世伟. 露天转地下开采边坡爆破振动传播特性及安全判据研究 [D]. 武汉: 中国地质大学(武汉), 2017.

    LU S W. Propagation characteristics of blasting vibration in slopes subjected to open-pit to underground mining and safety criterion [D]. Wuhan: China University of Geosciences (Wuhan), 2017.
    [3] 胡国忠. 城市地下工程爆破的地面爆破震动效应及其震动强度预测 [D]. 重庆: 重庆大学, 2005.

    HU G Z. Forecast on intensity of vibration and study on effect of ground blast induced vibration of underground engineering in city [D]. Chongqing: Chongqing University, 2005.
    [4] 王玉杰, 梁开水, 田新邦. 周宁水电站地下厂房开挖爆破地震波衰减规律的研究 [J]. 岩石力学与工程学报, 2005, 24(22): 4111–4114. doi: 10.3321/j.issn:1000-6915.2005.22.017

    WANG Y J, LIANG K S, TIAN X B. Study on redundant regulation of underground digging blasting vibration of Zhouning hydropower station [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(22): 4111–4114. doi: 10.3321/j.issn:1000-6915.2005.22.017
    [5] 董永香, 黄晨光, 段祝平. 多层介质对应力波传播特性影响分析 [J]. 高压物理学报, 2005, 19(1): 59–65. doi: 10.11858/gywlxb.2005.01.011

    DONG Y X, HUANG C G, DUAN Z P. Analysis on the influence of multi-layered media on stress wave propagation [J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 59–65. doi: 10.11858/gywlxb.2005.01.011
    [6] SMERZINI C, AVILÉS J, PAOLUCCI R, et al. Effect of underground cavities on surface earthquake ground motion under SH wave propagation [J]. Earthquake Engineering & Structural Dynamics, 2009, 38(12): 1441–1460. doi: 10.1002/eqe.912
    [7] 王猛, 马天宝, 宁建国. 炸药混凝土中爆炸能量释放规律的研究 [J]. 高压物理学报, 2012, 26(5): 517–522. doi: 10.11858/gywlxb.2012.05.006

    WANG M, MA T B, NING J G. Research of energy release law of explosive blasting in concrete [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 517–522. doi: 10.11858/gywlxb.2012.05.006
    [8] 王超, 周传波, 路世伟, 等. 城市暗挖隧道爆破地震波传播规律研究 [J]. 科学技术与工程, 2017, 17(6): 158–162. doi: 10.3969/j.issn.1671-1815.2017.06.028

    WANG C, ZHOU C B, LU S W, et al. Propagation pattern of blasting vibration in the surrounding rock of metro tunnel [J]. Science Technology and Engineering, 2017, 17(6): 158–162. doi: 10.3969/j.issn.1671-1815.2017.06.028
    [9] 张震, 周传波, 路世伟, 等. 超浅埋地铁站通道爆破暗挖地表振动传播特征 [J]. 中南大学学报(自然科学版), 2017, 48(8): 2119–2125. doi: 10.11817/j.issn.1672-7207.2017.08.020

    ZHANG Z, ZHOU C B, LU S W, et al. Propagation characteristics of ground vibration induced by subsurface blasting excavation in an ultra-shallow buried underpass [J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2119–2125. doi: 10.11817/j.issn.1672-7207.2017.08.020
    [10] 高文学, 颜鹏程, 李志星, 等. 浅埋隧道爆破开挖及其振动效应研究 [J]. 岩石力学与工程学报, 2011, 30(Suppl 2): 4153–4157.

    GAO W X, YAN P C, LI Z X, et al. Blasting excavation and vibration effects of shallow tunnel excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl 2): 4153–4157.
    [11] 汪平, 吉凌. 浅埋地铁隧道爆破振动速度传播规律及预测 [J]. 工程爆破, 2021, 27(2): 108–113, 134. doi: 10.19931/j.EB.20200222

    WANG P, JI L. Propagation law and prediction of blasting vibration velocity of shallow buried subway tunnel [J]. Engineering Blasting, 2021, 27(2): 108–113, 134. doi: 10.19931/j.EB.20200222
    [12] 陈学军, 余思喆, 宋宇, 等. 采矿爆破振动波在岩溶区的传播影响因素分析 [J]. 地质力学学报, 2018, 24(5): 692–698. doi: 10.12090/j.issn.1006-6616.2018.24.05.070

    CHEN X J, YU S Z, SONG Y, et al. Analysis of factors influencing the propagation of mining blasting vibration wave in karst area [J]. Journal of Geomechanics, 2018, 24(5): 692–698. doi: 10.12090/j.issn.1006-6616.2018.24.05.070
    [13] JAYASINGHE B, ZHAO Z Y, CHEE A G T, et al. Attenuation of rock blasting induced ground vibration in rock-soil interface [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 770–778. doi: 10.1016/j.jrmge.2018.12.009
    [14] 朱斌, 蒋楠, 贾永胜, 等. 下穿燃气管道爆破振动效应现场试验研究 [J]. 岩石力学与工程学报, 2019, 38(12): 2582–2592. doi: 10.13722/j.cnki.jrme.2019.0183

    ZHU B, JIANG N, JIA Y S, et al. Field experiment on blasting vibration effect of underpass gas pipelines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2582–2592. doi: 10.13722/j.cnki.jrme.2019.0183
    [15] 高启栋, 卢文波, 冷振东, 等. 考虑爆源特征的岩石爆破诱发地震波的波型与组分分析 [J]. 岩土力学, 2021, 42(10): 2830–2844. doi: 10.16285/j.rsm.2021.0108

    GAO Q D, LU W B, LENG Z D, et al. Analysis of wave-type and seismic component induced by rock blasting considering source characteristics [J]. Rock and Soil Mechanics, 2021, 42(10): 2830–2844. doi: 10.16285/j.rsm.2021.0108
    [16] 王秉相, 程普锋, 郑宇轩, 等. 应力波在散体颗粒中的传播规律 [J]. 高压物理学报, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508

    WANG B X, CHENG P F, ZHENG Y X, et al. Attenuation law of stress wave in granular particles [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508
    [17] 王桂林, 欧阳啸天, 翟俊, 等. 浅埋三舱管廊甲烷爆炸的地面响应规律 [J]. 高压物理学报, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616

    WANG G L, OUYANG X T, ZHAI J, et al. Ground response law of methane explosion in shallow buried three-cabin pipe gallery [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
    [18] WOLF J P. Dynamic soil-structure interaction [M]. Englewood Cliffs: Prentice-Hall, 1985.
    [19] 周俊汝. 爆破地震波传播过程中振动主频的衰减规律研究 [D]. 武汉: 武汉大学, 2017.

    ZHOU J R. Study on attenuation of dominant frequency of blast-induced vibration [D]. Wuhan: Wuhan University, 2017.
  • 加载中
图(7)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  165
  • PDF下载量:  34
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-09-27
  • 刊出日期:  2022-12-05

目录

/

返回文章
返回