冲击载荷下周期性多孔夹芯结构拓扑优化及动力响应

廖芳 李世强 吴桂英

廖芳, 李世强, 吴桂英. 冲击载荷下周期性多孔夹芯结构拓扑优化及动力响应[J]. 高压物理学报, 2022, 36(5): 054201. doi: 10.11858/gywlxb.20220560
引用本文: 廖芳, 李世强, 吴桂英. 冲击载荷下周期性多孔夹芯结构拓扑优化及动力响应[J]. 高压物理学报, 2022, 36(5): 054201. doi: 10.11858/gywlxb.20220560
LIAO Fang, LI Shiqiang, WU Guiying. Topological Optimization and Dynamic Response of Periodic Porous Sandwich Structure under Impact Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054201. doi: 10.11858/gywlxb.20220560
Citation: LIAO Fang, LI Shiqiang, WU Guiying. Topological Optimization and Dynamic Response of Periodic Porous Sandwich Structure under Impact Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054201. doi: 10.11858/gywlxb.20220560

冲击载荷下周期性多孔夹芯结构拓扑优化及动力响应

doi: 10.11858/gywlxb.20220560
基金项目: 国家自然科学基金(12072219)
详细信息
    作者简介:

    廖 芳(1998-),女,硕士研究生,主要从事轻质材料与冲击动力学行为研究.E-mail:liaofang1998@163.com

    通讯作者:

    李世强(1986-),男,博士,副教授,主要从事冲击动力学研究. E-mail:lishiqiang@tyut.edu.cn

  • 中图分类号: O347.1; O521.9

Topological Optimization and Dynamic Response of Periodic Porous Sandwich Structure under Impact Load

  • 摘要: 在等效静力方法框架下基于双向渐进结构优化硬杀法构建了冲击载荷下周期性多孔夹芯结构的拓扑优化方法。采用ABAQUS有限元软件,研究了周期性优化夹芯结构与梯形波纹芯层、矩形波纹芯层和随机Voronoi芯层夹芯梁在刚体以100 m/s的速度撞击下的变形失效模式。在载荷作用前期,优化夹芯结构的上半部分芯层被完全压缩,能量吸收优于其他3种结构;在载荷作用后期,由于优化夹芯结构的最终塑性变形较小,在整个响应过程中总能量吸收略小于其他3种结构。为检验单一载荷工况下优化夹芯结构在其他载荷作用下的性能,采用不同速度的刚体以3种不同类型的脉冲载荷加载,比较了4种夹芯结构的能量吸收性能。综合考虑夹芯结构上下面板的跨中挠度、比吸能、芯层吸能占比和平均冲击力后发现:在刚体冲击下,优化夹芯结构具有更好的能量吸收性能和抗冲击性能;在矩形脉冲下,优化夹芯结构的比吸能小于矩形波纹芯夹芯结构,未能体现结构优化的优势。研究表明,单一工况下优化所得的结构不能在任意载荷下均表现出最优异的性能,因此,针对不同的载荷工况,需要进一步的研究。

     

  • 图  优化流程

    Figure  1.  Flow chart of topology optimization

    图  典型的具有m1× m2个单胞的二维周期结构

    Figure  2.  Representative two dimensional periodic structure with m1× m2 cells

    图  冲击载荷下固支梁结构示意图

    Figure  3.  Schematic diagram of fixed sandwich structure subjected to impact load

    图  固支夹芯结构优化历程

    Figure  4.  Evolutionary histories of fixed-clamped sandwich structure

    图  芯层和面板的结构参数

    Figure  5.  Structural parameters of core and panel

    图  不同芯层的夹芯结构示意图

    Figure  6.  Schematic diagram of sandwich structures with different cores

    图  不同夹芯结构的变形模式

    Figure  7.  Deformation modes of different sandwich structures

    图  冲击载荷下不同夹芯结构的吸能时程曲线

    Figure  8.  Energy absorption of differnet sandwich structures versus time under impact load

    图  不同速度的刚体撞击下不同结构上下面板的跨中挠度

    Figure  9.  Deflections at the center points of top and bottom panels of different sandwich structures under the rigid body impact at different velocities

    图  10  不同速度的刚体撞击下夹芯结构的比吸能和芯层吸能占比EC/EW

    Figure  10.  Comparison of specific energy absorption and EC/EW of sandwich structures under the rigid body impact at different velocities

    图  11  不同速度刚体撞击下结构受到的平均冲击力

    Figure  11.  Mean impact load received by sandwich structures under the rigid body impact at different velocities

    图  12  不同脉冲下夹芯结构的变形

    Figure  12.  Deformations of sandwich structures under different impulse loads

    图  13  不同脉冲下不同夹芯结构上下面板的跨中挠度

    Figure  13.  Deflections at the center points of top and bottom panels of sandwich structures under different impulse loads

    图  14  不同脉冲下夹芯结构的吸能性能比较

    Figure  14.  Comparison of energy absorption of sandwich structures under different impulse loads

    表  1  优化结构的上面板挠度与其他3种结构中上面板挠度的最大值的对比

    Table  1.   Comparison of top panel deflection of optimal structure and the maximum value of other three structures

    v0/(m∙s−1)Core with the maximum deflection of the
    top panel for other three structures
    Ut,max/mm$U{_{\rm {t} }^{ {\rm{op} } } }$/mm(Ut,max−$U{_{\rm {t} }^{ {\rm{op} } } }$)/mmError/%
    30Rectangular core5.204.171.0319.8
    50Trapezoidal core11.579.841.7315.0
    70Rectangular core21.2816.734.5521.4
    100Trapezoidal core41.9027.3614.5434.7
    120Trapezoidal core54.2835.8618.4233.9
    150Trapezoidal core75.4051.5623.8431.6
    下载: 导出CSV

    表  2  优化结构的下面板挠度与其他3种结构中最大值的对比

    Table  2.   Comparison of bottom panel deflection of optimal structure and the maximum value of other three structures

    v0/(m∙s−1)Core with the maximum deflection of the
    bottom panel for other three structures
    Ub,max/mm$U{_{\rm {t} }^{ {\rm{op} } } } $/mm(Ub,max−$U{_{\rm {t} }^{ {\rm{op} } } } $)/mmError/%
    30Rectangular core5.051.323.7373.9
    50Rectangular core10.963.467.5068.4
    70Rectangular core18.207.0811.1261.1
    100Trapezoidal core30.6214.8615.7651.5
    120Trapezoidal core49.7521.4728.2856.8
    150Rectangular core63.4834.9628.5244.9
    下载: 导出CSV
  • [1] LI S Q, WU G X, WANG Z H, et al. Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading [J]. International Journal of Mechanical Sciences, 2015, 96/97: 1–12. doi: 10.1016/j.ijmecsci.2015.03.011
    [2] 张振聪, 张旭, 黄辉秀, 等. 风电叶片夹芯结构的疲劳性能 [J]. 塑料工业, 2021, 49(11): 79–84. doi: 10.3969/j.issn.1005-5770.2021.11.017

    ZHANG Z C, ZHANG X, HUANG H X, et al. Fatigue behavior of sandwich structure of wind turbine blade [J]. China Plastics Industry, 2021, 49(11): 79–84. doi: 10.3969/j.issn.1005-5770.2021.11.017
    [3] 陈昕, 朱锡, 张力军, 等. 雷达防弹天线罩夹芯结构设计与性能研究 [J]. 兵工学报, 2010, 31(10): 1298–1302.

    CHEN X, ZHU X, ZHANG L J, et al. Design and properties of sandwich structure for ballistic-resistant radome [J]. Acta Armamentarii, 2010, 31(10): 1298–1302.
    [4] 徐平, 石瑞瑞, 阮文松, 等. 泡沫铝夹芯结构汽车顶板的研究 [J]. 机械科学与技术, 2016, 35(10): 1636–1640. doi: 10.13433/j.cnki.1003-8728.2016.1027

    XU P, SHI R R, RUAN W S, et al. Studying car roof of aluminum foam sandwich structure [J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(10): 1636–1640. doi: 10.13433/j.cnki.1003-8728.2016.1027
    [5] MUKHERJEE G S, SARAF M N. Studies on a fiber reinforced plastics honeycomb structure [J]. Polymer Composites, 1994, 15(3): 217–222. doi: 10.1002/pc.750150307
    [6] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997: 546.
    [7] YU J L, WANG X, WEI Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core [J]. International Journal of Impact Engineering, 2003, 28(3): 331–347. doi: 10.1016/S0734-743X(02)00053-2
    [8] RUAN D, LU G X, WONG Y C. Quasi-static indentation tests on aluminium foam sandwich panels [J]. Composite Structures, 2010, 92(9): 2039–2046. doi: 10.1016/j.compstruct.2009.11.014
    [9] JANDAGHI SHAHI V, MARZBANRAD J. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes [J]. Thin-Walled Structures, 2012, 60: 24–37. doi: 10.1016/j.tws.2012.05.015
    [10] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0
    [11] SUN G Y, ZHANG J T, LI S Q, et al. Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading [J]. Thin-Walled Structures, 2019, 142: 499–515. doi: 10.1016/j.tws.2019.04.029
    [12] SUN Y L, LI Q M. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling [J]. International Journal of Impact Engineering, 2018, 112: 74–115. doi: 10.1016/j.ijimpeng.2017.10.006
    [13] NURICK G N, LANGDON G S, CHI Y, et al. Behaviour of sandwich panels subjected to intense air blast: part 1: experiments [J]. Composite Structures, 2009, 91(4): 433–441. doi: 10.1016/j.compstruct.2009.04.009
    [14] LI S Q, LI X, WANG Z H, et al. Sandwich panels with layered graded aluminum honeycomb cores under blast loading [J]. Composite Structures, 2017, 173: 242–254. doi: 10.1016/j.compstruct.2017.04.037
    [15] LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. doi: 10.1016/j.compositesa.2015.09.025
    [16] YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: an experimental study [J]. International Journal of Impact Engineering, 2015, 75: 100–109. doi: 10.1016/j.ijimpeng.2014.07.019
    [17] CHEN W J, TONG L Y, LIU S T. Concurrent topology design of structure and material using a two-scale topology optimization [J]. Computers & Structures, 2017, 178: 119–128.
    [18] BENDSØE M P. Optimal shape design as a material distribution problem [J]. Structural Optimization, 1989, 1(4): 193–202. doi: 10.1007/BF01650949
    [19] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization [J]. Computers & Structures, 1993, 49(5): 885–896.
    [20] HUANG X, XIE Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method [J]. Finite Elements in Analysis and Design, 2007, 43(14): 1039–1049. doi: 10.1016/j.finel.2007.06.006
    [21] XIA L, XIA Q, HUANG X D, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review [J]. Archives of Computational Methods in Engineering, 2018, 25(2): 437–478. doi: 10.1007/s11831-016-9203-2
    [22] GUO X, ZHANG W S, ZHANG J, et al. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 711–748. doi: 10.1016/j.cma.2016.07.018
    [23] ZHOU Y, ZHANG W H, ZHU J H, et al. Feature-driven topology optimization method with signed distance function [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 1–32. doi: 10.1016/j.cma.2016.06.027
    [24] WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1/2): 227–246.
    [25] LI H, LUO Z, GAO L, et al. Topology optimization for functionally graded cellular composites with metamaterials by level sets [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 340–364. doi: 10.1016/j.cma.2017.09.008
    [26] 彭细荣, 隋允康. 考虑破损-安全的连续体结构拓扑优化ICM方法 [J]. 力学学报, 2018, 50(3): 611–621. doi: 10.6052/0459-1879-17-366

    PENG X R, SUI Y K. ICM method for fail-safe topology optimization of continuum structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611–621. doi: 10.6052/0459-1879-17-366
    [27] YOO S H, CHANG S H, SUTCLIFFE M P F. Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(3): 427–434. doi: 10.1016/j.compositesa.2009.11.010
    [28] WANG L S, BASU P K, LEIVA J P. Automobile body reinforcement by finite element optimization [J]. Finite Elements in Analysis and Design, 2004, 40(8): 879–893. doi: 10.1016/S0168-874X(03)00118-5
    [29] CAVAZZUTI M, BALDINI A, BERTOCCHI E. High performance automotive chassis design: a topology optimization based approach [J]. Structural and Multidisciplinary Optimization, 2011, 44(1): 45–56. doi: 10.1007/s00158-010-0578-7
    [30] MRZYGŁÓD M, KUCZEK T. Uniform crashworthiness optimization of car body for high-speed trains [J]. Structural and Multidisciplinary Optimization, 2014, 49(2): 327–336. doi: 10.1007/s00158-013-0972-z
    [31] HUANG X, XIE Y M, LU G. Topology optimization of energy-absorbing structures [J]. International Journal of Crashworthiness, 2007, 12(6): 663–675. doi: 10.1080/13588260701497862
    [32] DUDDECK F, HUNKELER S, LOZANO P, et al. Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata [J]. Structural and Multidisciplinary Optimization, 2016, 54(3): 415–428. doi: 10.1007/s00158-016-1445-y
    [33] PATEL N M, KANG B S, RENAUD J E, et al. Crashworthiness design using topology optimization [J]. Journal of Mechanical Design, 2009, 131(6): 061013. doi: 10.1115/1.3116256
    [34] SOTO C A. Structural topology optimization for crashworthiness [J]. International Journal of Crashworthiness, 2004, 9(3): 277–283. doi: 10.1533/ijcr.2004.0288
    [35] PARK G J. Technical overview of the equivalent static loads method for non-linear static response structural optimization [J]. Structural and Multidisciplinary Optimization, 2011, 43(3): 319–337. doi: 10.1007/s00158-010-0530-x
    [36] NELSON M F, WOLF JR J A. The use of inertia relief to estimate impact loads [C]//Proceeding of the 2nd International Conference on Vehicle Structural Mechanics. SAE, 1977: 149−155.
    [37] WU S Z, ZHENG G, SUN G Y, et al. On design of multi-cell thin-wall structures for crashworthiness [J]. International Journal of Impact Engineering, 2016, 88: 102–117. doi: 10.1016/j.ijimpeng.2015.09.003
    [38] 孙晓辉, 丁晓红. 结构多目标拓扑优化设计 [J]. 机械设计与研究, 2018, 28(4): 1–4, 9. doi: 10.13952/j.cnki.jofmdr.2012.04.016

    SUN X H, DING X H. Research on multi-objective topology optimization design methods for structure [J]. Machine Design and Research, 2018, 28(4): 1–4, 9. doi: 10.13952/j.cnki.jofmdr.2012.04.016
    [39] DAVIS J R, JOSEPH R. Metals handbook [M]. Ohio: Materials Park, 1998: 878.
    [40] KARAGIOZOVA D, NURICK G N, LANGDON G S. Behaviour of sandwich panels subject to intense air blasts: part 2: numerical simulation [J]. Composite Structures, 2009, 91(4): 442–450. doi: 10.1016/j.compstruct.2009.04.010
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  276
  • PDF下载量:  56
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-04-17
  • 录用日期:  2022-04-17
  • 网络出版日期:  2022-08-31
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回