非静水压下HMX炸药晶体的高压相变

随志磊 代如成 王中平 郑贤旭 张增明

随志磊, 代如成, 王中平, 郑贤旭, 张增明. 非静水压下HMX炸药晶体的高压相变[J]. 高压物理学报, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559
引用本文: 随志磊, 代如成, 王中平, 郑贤旭, 张增明. 非静水压下HMX炸药晶体的高压相变[J]. 高压物理学报, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559
SUI Zhilei, DAI Rucheng, WANG Zhongping, ZHENG Xianxu, ZHANG Zengming. High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559
Citation: SUI Zhilei, DAI Rucheng, WANG Zhongping, ZHENG Xianxu, ZHANG Zengming. High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559

非静水压下HMX炸药晶体的高压相变

doi: 10.11858/gywlxb.20220559
基金项目: 国家自然科学基金(11904340);科学挑战专题(TZ2016001)
详细信息
    作者简介:

    随志磊(1986-),男,博士,助理研究员,主要从事含能材料的微细观结构和爆轰性能研究.E-mail:suizhilei179@126.com

    通讯作者:

    张增明(1966-),男,博士,教授,主要从事极端条件下含能材料、纳米发光及二维拓扑材料物性研究. E-mail:zzm@ustc.edu.cn

  • 中图分类号: O521.2

High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure

  • 摘要: HMX是一种性能优良的高能炸药,在武器工业中广泛使用。目前,HMX在高压下特别是非静水压下的相变规律仍存在争议。为此,采用不同的传压介质,开展了非静水压下HMX晶体的高压拉曼实验研究。结果表明,HMX晶体分别在4.9、13.9和17.5 GPa发生了结构相变。在13.9 GPa下,HMX开始发生相Ⅱ→相Ⅲ的相变,并在一定的压力范围内两相共存;当压力为17.5 GPa时,出现另一个新相(相Ⅳ),在17.5~23.6 GPa的压力范围内出现相Ⅱ、相Ⅲ和相Ⅳ三相共存现象。HMX晶体在非静水压下的相变路径与准静水压下的相变路径完全不同,非静水压环境下的压力梯度是造成该差异的原因。

     

  • 图  实验中使用的β-HMX晶体照片

    Figure  1.  Photograph of β-HMX crystal used in the experiment

    图  β-HMX的晶体结构和XRD谱

    Figure  2.  Crystal structure and XRD pattern of β-HMX

    图  常温常压下β-HMX晶体的拉曼光谱

    Figure  3.  Raman spectrum of β-HMX crystal at atmospheric pressure and room temperature

    图  实验1 中HMX晶体的高压拉曼光谱(0~26.1 GPa)

    Figure  4.  High-pressure Raman spectra of HMX crystal of Exp. 1 (0−26.1 GPa)

    图  实验1中 HMX晶体的高压拉曼光谱(12.5~23.6 GPa)

    Figure  5.  High-pressure Raman spectra of HMX crystal of Exp. 1 (12.5−23.6 GPa)

    图  实验1中压力加载前、后HMX晶体的拉曼光谱

    Figure  6.  Raman spectra of HMX crystals before loading and after releasing pressure of Exp. 1

    图  实验2中HMX晶体的高压拉曼光谱(0~15.8 GPa)

    Figure  7.  High-pressure Raman spectra of HMX crystal of Exp. 2 (0−15.8 GPa)

    图  实验2中HMX晶体的高压拉曼光谱(15.8~17.6 GPa)

    Figure  8.  High-pressure Raman spectra of HMX crystal of Exp. 2 (15.8–17.6 GPa)

    图  高压下实验2和实验1的拉曼光谱对比

    Figure  9.  Comparison of Raman spectra of Exp. 2 and Exp. 1 under high pressure

    表  1  拉曼波数及其归属模式

    Table  1.   Frequencies of Raman modes of HMX

    Wavenumber/cm−1Assignment Wavenumber/cm−1Assignment Wavenumber/cm−1Assignment
    94τ(ring) + γ(N–N) 717τ(ring) + γ(NO2) 1364ω(CH2)
    127τ(NO2)758γ(NO2)1416δ(CH2)
    134831ν(ring)1433
    1528801450
    176949ν(ring) + ρ(CH2)1456
    182τ(ring) + γ(N–N)9621505νas(NO2)
    231ν(ring) + τ(ring)10771519
    28110901530
    31411651555
    36211871566
    4151238νs(NO2) + νs(N–N)2982νs(CH2)
    43612632992
    594τ(ring) + γ(NO2)1306γ(CH2)3027νas(CH2)
    6351315νs(NO2)3036
    6581346γ(CH2)
      Note: as–anti-symmetric; s–symmetric; ν–stretching; δ–deformation motion; τ–torsional motion; γ–deformations involving
      one ring and one non-ring bond; ω(XY2)–wag of Y2 atoms out of XY2 plane; ρ(XY2)–rocking in XY2 plane.
    下载: 导出CSV
  • [1] FABBIANI F P A, PULHAM C R. High-pressure studies of pharmaceutical compounds and energetic materials [J]. Chemical Society Reviews, 2006, 35(10): 932–942. doi: 10.1039/b517780b
    [2] MCCRONE W C. Crystallographic data 36: cyclotetramethylene tetranitramine (HMX) [J]. Analytical Chemistry, 1950, 22(9): 1225–1226. doi: 10.1021/ac60045a050
    [3] SHARIA O, TSYSHEVSKY R, KUKLJA M M. Surface-accelerated decomposition of δ-HMX [J]. The Journal of Physical Chemistry Letters, 2013, 4(5): 730–734. doi: 10.1021/jz302166p
    [4] CHOI C S, BOUTIN H P. A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction [J]. Acta Crystallographica Section B, 1970, 26(9): 1235–1240. doi: 10.1107/S0567740870003941
    [5] GALLAGHER H G, MILLER J C, SHEEN D B, et al. Mechanical properties of β-HMX [J]. Chemistry Central Journal, 2015, 9: 22. doi: 10.1186/s13065-015-0091-6
    [6] LI H, LI Y, BAI L F, et al. Acceleration of δ- to β-HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958–6964. doi: 10.1021/acs.jpcc.8b10002
    [7] GOETZ F, BRILL T B, FERRARO J R. Pressure dependence of the Raman and infrared spectra of α-, β-, γ-, and δ- octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [J]. The Journal of Physical Chemistry, 1978, 82(17): 1912–1917. doi: 10.1021/j100506a011
    [8] GAO C, ZHANG X Y, ZHANG C C, et al. Effect of pressure gradient and new phases for 1, 3, 5-trinitrohexahydro-s-triazine (RDX) under high pressures [J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14374–14383. doi: 10.1039/C8CP01192C
    [9] SUN X Y, WANG X Q, LIANG W T, et al. Pressure-induced conformer modifications and electronic structural changes in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) up to 20 GPa [J]. The Journal of Physical Chemistry C, 2018, 122(28): 15861–15867. doi: 10.1021/acs.jpcc.8b03323
    [10] DICK J J. A comparison of the shock and static compression curves for four solid explosives [J]. Journal of Energetic Materials, 1983, 1(3): 275–286. doi: 10.1080/07370658308010622
    [11] YOO C S, CYNN H. Equation of state, phase transition, decomposition of β-HMX (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7- tetrazocine) at high pressures [J]. The Journal of Chemical Physics, 1999, 111(22): 10229–10235. doi: 10.1063/1.480341
    [12] PRAVICA M, GALLEY M, KIM E, et al. A far- and mid-infrared study of HMX (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine) under high pressure [J]. Chemical Physics Letters, 2010, 500(1): 28–34. doi: 10.1016/j.cplett.2010.09.072
    [13] GAO D X, HUANG J, LIN X H, et al. Phase transitions and chemical reactions of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine under high pressure and high temperature [J]. RSC Advances, 2019, 9(10): 5825–5833. doi: 10.1039/C8RA10638J
    [14] SUI Z L, SUN X Y, LIANG W T, et al. Phase confirmation and equation of state of β-HMX under 40 GPa [J]. The Journal of Physical Chemistry C, 2019, 123(50): 30121–30128. doi: 10.1021/acs.jpcc.9b09061
    [15] YAN T, WANG J H, LIU Y C, et al. Growth and morphology of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetraazacy-clooct ane (HMX) crystal [J]. Journal of Crystal Growth, 2015, 430: 7–13. doi: 10.1016/j.jcrysgro.2015.07.031
    [16] BRAND H V, RABIE R L, FUNK D J, et al. Theoretical and experimental study of the vibrational spectra of the α, β, and δ phases of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) [J]. The Journal of Physical Chemistry B, 2002, 106(41): 10594–10604. doi: 10.1021/jp020909z
    [17] LEVITAS V I, SHVEDOV L K. Low-pressure phase transformation from rhombohedral to cubic BN: experiment and theory [J]. Physical Reviow B, 2002, 65(10): 104109. doi: 10.1103/PhysRevB.65.104109
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1157
  • HTML全文浏览量:  434
  • PDF下载量:  71
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-04-27
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回