冲击载荷下平板玻璃裂纹扩展和破坏形态的数值模拟

王木飞 李志强

王木飞, 李志强. 冲击载荷下平板玻璃裂纹扩展和破坏形态的数值模拟[J]. 高压物理学报, 2022, 36(5): 054203. doi: 10.11858/gywlxb.20220558
引用本文: 王木飞, 李志强. 冲击载荷下平板玻璃裂纹扩展和破坏形态的数值模拟[J]. 高压物理学报, 2022, 36(5): 054203. doi: 10.11858/gywlxb.20220558
WANG Mufei, LI Zhiqiang. Numerical Simulation of Crack Propagation and Damage Behavior of Glass Plates under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054203. doi: 10.11858/gywlxb.20220558
Citation: WANG Mufei, LI Zhiqiang. Numerical Simulation of Crack Propagation and Damage Behavior of Glass Plates under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054203. doi: 10.11858/gywlxb.20220558

冲击载荷下平板玻璃裂纹扩展和破坏形态的数值模拟

doi: 10.11858/gywlxb.20220558
基金项目: 国家自然科学基金(11972244)
详细信息
    作者简介:

    王木飞(1996-),男,硕士研究生,主要从事冲击动力学和近场动力学研究.E-mail:1470979047@qq.com

    通讯作者:

    李志强(1973-),男,博士,教授,主要从事冲击动力学研究. E-mail:lizhiqiang@tyut.edu.cn

  • 中图分类号: O346.1; O521.2

Numerical Simulation of Crack Propagation and Damage Behavior of Glass Plates under Impact Loading

  • 摘要: 裂纹的萌生和扩展是计算力学领域长期存在的难点和热点,也是玻璃、岩石、混凝土等脆性材料中常见的工程实际问题。为了探究冲击载荷下平板钠钙玻璃的损伤破坏行为和细观裂纹扩展规律,分别采用单元删除法、不连续伽辽金近场动力学法(discontinuous Galerkin peridynamic, DG-PD)和无网格粒子近场动力学法(meshless peridynamic, M-PD),研究其裂纹扩展行为。单元删除法采用JH-2材料模型,同时添加最大主应力和最大主应变失效准则;DG-PD法采用节点分离操作,并施加临界能量释放率准则;M-PD法采用自编程序粒子离散方法,选择合适的计算域,并施加临界伸长率准则。模拟结果表明:(1) 单元删除法可大致模拟出玻璃在冲击载荷下的损伤形貌,但在捕捉裂纹分叉和贯通等方面略显不足,未见玻璃碎片的飞溅,无法通过碎片飞溅速度评估其安全性能;(2) DG-PD法中环状裂纹和径向裂纹明显,裂纹具有很高的对称性,冲击点和边框处有大量玻璃碎片飞溅;(3) M-PD法中能捕捉到径向裂纹和环向裂纹,且裂纹的对称性较好,近场域和冲击速度对平板玻璃的动态响应有着重要的影响,就损伤形态而言,M-PD法和DG-PD法具有很高的一致性。

     

  • 图  有限元模型及弹头放大图

    Figure  1.  Finite element model and enlarged view of the bullet

    图  迎撞面和背撞面的损伤演化

    Figure  2.  Damage evolution of the top face and bottom face

    图  不同冲击速度下平板玻璃的最终损伤模态

    Figure  3.  Final damage of glass plates at different impact velocities

    图  不同冲击速度下损伤参数的对比

    Figure  4.  Comparison of damage parameters at different impact velocities

    图  二维有限单元断裂前后的节点分离示意图

    Figure  5.  Node separation before and after fracture of 2D finite elements

    图  5 m/s冲击速度下迎撞面的损伤演化

    Figure  6.  Damage evolution of the impact face at the impact velocity of 5 m/s

    图  50 m/s冲击速度下迎撞面的损伤演化

    Figure  9.  Damage evolution of the impact face at the impact velocity of 50 m/s

    图  15 m/s冲击速度下迎撞面的损伤演化

    Figure  7.  Damage evolution of the top face at the impact velocity of 15 m/s

    图  30 m/s冲击速度下迎撞面的损伤演化

    Figure  8.  Damage evolution of the top face at the impact velocity of 30 m/s

    图  10  采用DG-PD法得到的不同冲击速度下中心点单元的速度变化

    Figure  10.  Velocity change of center element obtained by DG-PD method at different impact velocities

    图  11  M-PD非局部相互作用示意图

    Figure  11.  Schematic diagram of M-PD non-local interaction

    图  12  M-PD粒子模型及弹头放大图

    Figure  12.  M-PD particle model and enlarged view of the bullet

    图  13  30 m/s冲击速度下迎爆面的损伤演化

    Figure  13.  Damage evolution images of the top face at the impact velocity of 30 m/s

    图  14  不同近场域大小下的平板玻璃损伤

    Figure  14.  Damage of glass plate under different horizon sizes

    图  15  不同冲击速度下平板玻璃的最终损伤破坏

    Figure  15.  Final damage of glass plate at different impact velocities

    表  1  玻璃材料JH-2材料模型参数[6]

    Table  1.   JH-2 material model parameters of glass material[6]

    $ \;\rho $/(kg·m−3)G/GPaABCMN$ \dot{\varepsilon }_{\rm s} $T/GPa
    2530240.930.20.00310.7710.05042
    σf,maxσe/GPapHEL/GPaβD1D2k1/GPak2/GPak3/GPa
    0.55.952.9210.0430.8545.4−138290
    下载: 导出CSV

    表  2  边框和弹头刚体材料模型参数

    Table  2.   Rigid body material model parameters of frame and bullet

    $ \,\rho $/(kg·m−3)$\,\nu$E/GPa
    78500.28200
    下载: 导出CSV

    表  3  玻璃材料DG-PD材料模型参数

    Table  3.   DG-PD material model parameters of glass material

    $ \,\rho $/(kg·m−3)E/GPaGt/(J·m−2)HSFAC
    25307215.470.8
    下载: 导出CSV

    表  4  玻璃材料M-PD材料模型参数

    Table  4.   M-PD model parameters of glass

    $ \,\rho $/(kg·m−3)E/GPaG/GPaS0$ \Delta x $/mm$ \delta $/mm
    25307224$ 7.17\times 1{0}^{-5} $39.03
    下载: 导出CSV
  • [1] KRAUTHAMMER T, ALTENBERG A. Negative phase blast effects on glass panels [J]. International Journal of Impact Engineering, 2000, 24: 1–17. doi: 10.1016/S0734-743X(99)00043-3
    [2] YUAN Y, TAN P J, LI Y B. Dynamic structural response of laminated glass panels to blast loading [J]. Composite Structure, 2017, 182: 579–589. doi: 10.1016/j.compstruct.2017.09.028
    [3] HOLMQUIST T J, JOHNSON G R, LOPATIN C M, et al. High strain rate properties and constitutive modeling of glass: SAND 95-0379C [R]. Albuquerque, NM: Sandia National Laboratories, 1995.
    [4] DARYADEL S S, MANTENA P R, KIM K, et al. Dynamic response of glass under low-velocity impact and high strain-rate SHPB compression loading [J]. Journal of Non-Crystalline Solids, 2016, 432B: 432–439.
    [5] 张晓颖, 李胜杰, 李志强. 爆炸载荷作用下夹层玻璃动态响应的数值模拟 [J]. 兵工学报, 2018, 39(7): 1379–1388. doi: 10.3969/j.issn.1000-1093.2018.07.016

    ZHANG X Y, LI S J, LI Z Q. Numerical simulation of dynamic response of laminated glass subjected to blast load [J]. Acta Armamentarii, 2018, 39(7): 1379–1388. doi: 10.3969/j.issn.1000-1093.2018.07.016
    [6] 唐剑. 冲击荷载下建筑玻璃裂纹扩展及破碎的试验与数值模拟研究 [D]. 天津: 天津大学, 2018.
    [7] DAUX C, MOES N, DOLBOW J, et al. Arbitrary branched and intersecting cracks with the extended finite element method [J]. International Journal for Numerical Methods in Engineering, 2000, 48(12): 1741−1760.
    [8] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of Mechanics Physics of Solids, 2000, 48(1): 175–209. doi: 10.1016/S0022-5096(99)00029-0
    [9] 徐泳, 孙其诚, 张凌, 等. 颗粒离散元法研究进展 [J]. 力学进展, 2003, 33(2): 251–260. doi: 10.3321/j.issn:1000-0992.2003.02.010

    XU Y, SUN Q C, ZHANG L, et al. Advances in discrete element methods for particulate materials [J]. Advances in Mechanics, 2003, 33(2): 251–260. doi: 10.3321/j.issn:1000-0992.2003.02.010
    [10] 张锁春. 光滑质点流体动力学(SPH)方法(综述) [J]. 计算物理, 1996, 13(4): 2–14.

    ZHANG S C. Smoothed particle hydrodynamics (SPH) method (a review) [J]. Chinese Journal of Computation Physics, 1996, 13(4): 2–14.
    [11] SUN X, LIU W. Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading [J]. International Journal of Impact Engineering, 2009, 36(2): 226–234. doi: 10.1016/j.ijimpeng.2008.01.014
    [12] NIE X, CHEN W. Dynamic failure of borosilicate glass under compression/shear loading experiments [J]. Journal of the American Ceramic Society, 2007, 90(8): 2556–2562. doi: 10.1111/j.1551-2916.2007.01819.x
    [13] ZANG M, CHEN H, LEI Z. Simulation on high velocity impact process of windshield by sph/fem coupling method [C]//2010 WASE International Conference on Information Engineering. Institute of Electrical and Electronics Engineers, 2010: 381–384.
    [14] DENG R B, JIN X L. Numerical simulation for blast analysis of insulating glass in a curtain wall [J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2010, 11(3): 162–171. doi: 10.1080/15502281003702302
    [15] BOBARU F, HA Y D, HU W K, et al. Damage progression from impact in layered glass modeled with peridynamics [J]. Central European Journal of Engineering, 2012, 2(4): 551–561.
    [16] BLESS S, CHEN T. Impact damage in layered glass [J]. International Journal of Fracture, 2010, 162(1/2): 151–158. doi: 10.1007/s10704-009-9379-7
    [17] REN B, WU C T, SELESON P, et al. A peridynamic failure analysis of fiber-reinforced composite laminates using finite element discontinuous Galerkin approximations [J]. International Journal of Fracture, 2018, 214: 49–68. doi: https://doi.org/10.1007/s10704-018-0317-4
    [18] 师燕超, 于海涛, 李忠献. 爆炸荷载作用下建筑玻璃的破碎分析 [J]. 天津大学学报(自然科学与工程技术版), 2015, 48(10): 888–893. doi: 10.11784/tdxbz201411025

    SHI Y C, YU H T, LI Z X. Analysis of architecture glass breaking under explosion load [J]. Journal of Tianjin University (Science and Technology), 2015, 48(10): 888–893. doi: 10.11784/tdxbz201411025
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  138
  • PDF下载量:  53
出版历程
  • 收稿日期:  2022-04-04
  • 修回日期:  2022-05-27
  • 网络出版日期:  2022-09-24
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回