波纹芯层夹芯管的轴向压缩吸能特性与多目标优化

马梦娇 刘志芳 李世强

马梦娇, 刘志芳, 李世强. 波纹芯层夹芯管的轴向压缩吸能特性与多目标优化[J]. 高压物理学报, 2022, 36(6): 064201. doi: 10.11858/gywlxb.20220554
引用本文: 马梦娇, 刘志芳, 李世强. 波纹芯层夹芯管的轴向压缩吸能特性与多目标优化[J]. 高压物理学报, 2022, 36(6): 064201. doi: 10.11858/gywlxb.20220554
MA Mengjiao, LIU Zhifang, LI Shiqiang. Energy Absorption and Multi-Objective Optimization for Sandwich Tubes with a Corrugated Core under Axial Compression[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064201. doi: 10.11858/gywlxb.20220554
Citation: MA Mengjiao, LIU Zhifang, LI Shiqiang. Energy Absorption and Multi-Objective Optimization for Sandwich Tubes with a Corrugated Core under Axial Compression[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064201. doi: 10.11858/gywlxb.20220554

波纹芯层夹芯管的轴向压缩吸能特性与多目标优化

doi: 10.11858/gywlxb.20220554
基金项目: 国家自然科学基金(12072219)
详细信息
    作者简介:

    马梦娇(1997-),女,硕士研究生,主要从事轻质材料的冲击动力学行为研究. E-mail:sunnymamj@163.com

    通讯作者:

    李世强(1986-),男,博士,副教授,主要从事冲击动力学研究. E-mail:lishiqiang@tyut.edu.cn

  • 中图分类号: O347.1; O521.9

Energy Absorption and Multi-Objective Optimization for Sandwich Tubes with a Corrugated Core under Axial Compression

  • 摘要: 将正弦波纹薄壁管作为芯层引入多边形薄壁管,获得了四边形、五边形、六边形3种波纹芯层夹芯管。首先,采用实验与数值模拟相结合的方法研究了3种波纹芯层夹芯管在轴向准静态压缩载荷下的力学响应,包括能量吸收性能,分析了结构壁厚和芯层波幅对夹芯管压缩性能的影响,数值模拟与实验结果吻合较好。其次,基于超折叠单元理论,给出了准静态压缩载荷下波纹芯层夹芯管的平均轴向压缩力的解析解。其中,波纹芯层六边形夹芯管在准静态轴向压缩过程中表现出渐进折叠屈曲的变形模式,理论预测的平均压缩力与实验结果吻合较好,相对误差为6.1%,与数值模拟结果相比,相对误差均在9.8%以内。波纹芯层夹芯管的比吸能随着结构壁厚和芯层波幅的增大而增大;而当波幅和壁厚相同时,六边形夹芯管的吸能能力优于四边形夹芯管和五边形夹芯管。最后,以最大比吸能和最小初始峰值力为目标,对3种结构的芯层波幅和结构壁厚进行了多目标优化,给出了最大比吸能与最小峰值载荷之间的平衡策略,得到了相应的Pareto前沿。

     

  • 图  波纹芯层

    Figure  1.  Corrugated core

    图  QSTCC、PSTCC和HSTCC的结构设计

    Figure  2.  Structural design of QSTCC, PSTCC and HSTCC

    图  有限元模型

    Figure  3.  Finite element model

    图  Al6061-T5的真实应力-应变曲线[13]

    Figure  4.  True stress-strain curve of Al6061-T5[13]

    图  网格敏感性验证

    Figure  5.  Validation of meshing sensitivity

    图  准静态轴向压缩实验装置和试件

    Figure  6.  Setup and specimen for the quasi-static axial compression experiment

    图  HSTCC的力-位移曲线

    Figure  7.  Force-displacement curves of HSTCC

    图  HSTCC的变形模式

    Figure  8.  Deformation modes of HSTCC

    图  基本折叠单元的理想折叠过程

    Figure  9.  Ideal folding process of a basic folding element

    图  10  基本结构单元简化

    Figure  10.  Simplification of basic constitutive elements

    图  11  QSTCC、PSTCC和HSTCC的横截面

    Figure  11.  Cross-sections of the QSTCC, PSTCC and HSTCC

    图  12  不同波幅(A)和壁厚(t)的QSTCC、PSTCC、HSTCC的吸能特性

    Figure  12.  Energy absorption characteristics of QSTCC, PSTCC and HSTCC with different amplitudes (A) and wall thicknesses (t)

    图  13  MCF的理论预测与数值模拟结果对比

    Figure  13.  Comparison of the theoretical prediction and simulation results on the MCF

    图  14  优化流程

    Figure  14.  Optimization process

    图  15  QSTCC、PSTCC和HSTCC的SEA-PCF关系的Pareto 前沿

    Figure  15.  Pareto front of the SEA-PCF relationship for QSTCC, PSTCC and HSTCC

    表  1  模拟和实验得到的吸能评价指标对比

    Table  1.   Comparison of the energy absorption evaluation indices between simulation and experiment

    PCFSEA
    Sim./kNExp./kNError/%Sim./(J·g−1)Exp./(J·g−1)Error/%
    34.7138.90−10.731.7729.836.3
    下载: 导出CSV

    表  2  准静态载荷下MCF的理论预测值与模拟结果的对比(部分)

    Table  2.   Comparison of the theoretical prediction and finite element simulation results on the MCF under quasi-static loading (partial)

    TypeA/mmt/mmMCF/kNError/%
    Sim.Theor.
    QSTCC20.513.7614.42 4.8
    21.037.4840.78 8.8
    40.515.2915.03−1.7
    41.044.5745.52−4.6
    50.515.8815.56−2.0
    51.050.2146.15−8.1
    PSTCC20.515.7616.23 3.0
    21.043.0045.89 6.7
    40.518.4017.38−5.6
    41.054.5249.18−9.8
    60.519.5719.38−1.0
    61.056.9654.88−3.7
    HSTCC20.518.2418.05−1.0
    21.052.2050.85−2.6
    40.521.1419.78−6.4
    41.064.5958.68−9.1
    60.522.7122.63−0.4
    61.067.9364.00−5.8
    下载: 导出CSV

    表  3  响应面模型精度评估

    Table  3.   Accuracy evaluation of the response surface model

    TypePCF SEA
    R2RMSE R2RMSE
    QSTCC0.9680.049 0.9880.027
    PSTCC0.9990.0100.9610.054
    HSTCC0.9980.0130.9820.038
    下载: 导出CSV

    表  4  优化与模拟结果对比

    Table  4.   Comparison between the optimized and simulation results

    TypeA/
    mm
    t/
    mm
    PCF SEA
    Opt./kNSim./kNError/% Opt./(J·g−1)Sim./(J·g−1)Error/%
    QSTCC4.60.527.3928.60−4.23 26.3126.40−0.34
    QSTCC5.01.064.4764.450.0342.9442.95−0.02
    PSTCC4.00.530.8730.98−0.3628.9827.913.83
    PSTCC5.01.075.8076.73−1.2142.5441.253.05
    HSTCC6.00.534.4934.71−0.6331.3631.77−1.29
    HSTCC5.71.087.1188.34−1.3947.7949.11−2.69
    下载: 导出CSV
  • [1] VINAYAGAR K, SENTHIL KUMAR A. Crashworthiness analysis of double section bi-tubular thin-walled structures [J]. Thin-Walled Structures, 2017, 112: 184–193. doi: 10.1016/j.tws.2016.12.008
    [2] LI Z X, MA W, XU P, et al. Crashworthiness of multi-cell circumferentially corrugated square tubes with cosine and triangular configurations [J]. International Journal of Mechanical Sciences, 2020, 165: 105205. doi: 10.1016/j.ijmecsci.2019.105205
    [3] 张涛, 吴英友, 朱显明, 等. 多边形截面薄壁管撕裂卷曲吸能研究 [J]. 爆炸与冲击, 2007, 27(3): 223–229. doi: 10.11883/1001-1455(2007)03-0223-07

    ZHANG T, WU Y Y, ZHU X M, et al. Energy absorption in splitting metal tubes with polygonal section [J]. Explosion and Shock Waves, 2007, 27(3): 223–229. doi: 10.11883/1001-1455(2007)03-0223-07
    [4] ABRAMOWICZ W, WIERZBICKI T. Axial crushing of multicorner sheet metal columns [J]. Journal of Applied Mechanics, 1989, 56(1): 113–120. doi: 10.1115/1.3176030
    [5] SUN G Y, WANG Z, YU H, et al. Experimental and numerical investigation into the crashworthiness of metal-foam-composite hybrid structures [J]. Composite Structures, 2019, 209: 535–547. doi: 10.1016/j.compstruct.2018.10.051
    [6] YIN H F, WEN G L, HOU S J, et al. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes [J]. Materials & Design, 2011, 32(8/9): 4449–4460. doi: 10.1016/j.matdes.2011.03.060
    [7] ZOU M, XU S C, WEI C G, et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo [J]. Thin-Walled Structures, 2016, 101: 222–230. doi: 10.1016/j.tws.2015.12.023
    [8] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
    [9] JUSUF A, DIRGANTARA T, GUNAWAN L, et al. Crashworthiness analysis of multi-cell prismatic structures [J]. International Journal of Impact Engineering, 2015, 78: 34–50. doi: 10.1016/j.ijimpeng.2014.11.011
    [10] HOU Y B, ZHANG Y, YAN X L, et al. Crushing behaviors of the thin-walled sandwich column under axial load [J]. Thin-Walled Structures, 2021, 159: 107229. doi: 10.1016/j.tws.2020.107229
    [11] LIU W Y, LIN Z Q, HE J Y, et al. Crushing behavior and multi-objective optimization on the crashworthiness of sandwich structure with star-shaped tube in the center [J]. Thin-Walled Structures, 2016, 108: 205–214. doi: 10.1016/j.tws.2016.08.021
    [12] WU S Z, ZHENG G, SUN G Y, et al. On design of multi-cell thin-wall structures for crashworthiness [J]. International Journal of Impact Engineering, 2016, 88: 102–117. doi: 10.1016/j.ijimpeng.2015.09.003
    [13] HU D Y, WANG Y Z, SONG B, et al. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing [J]. Composites Part B: Engineering, 2019, 162: 21–32. doi: 10.1016/j.compositesb.2018.10.095
    [14] YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure [J]. Thin-Walled Structures, 2018, 125: 1–11. doi: 10.1016/j.tws.2018.01.014
    [15] ZHANG X, ZHANG H. Axial crushing of circular multi-cell columns [J]. International Journal of Impact Engineering, 2014, 65: 110–125. doi: 10.1016/j.ijimpeng.2013.12.002
    [16] 邓志芳. 双级薄壁吸能管的抗撞性理论推导和实验研究 [D]. 长沙: 湖南大学, 2017.

    DENG Z F. Crashworthiness research of two-stage thin-walled tube from theoretical derivation and experimental study [D]. Changsha: Hunan University, 2017.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  151
  • PDF下载量:  53
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-04-16
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回