Effect of Projectile Geometry on Dynamic Mechanical Response of Graphene
-
摘要: 为探究弹丸几何形状对石墨烯动态力学响应的影响,考虑了不同形状以及同种形状下不同结构尺寸比例的两种弹丸设计方案,借助分子动力学模拟进行计算,通过表征弹丸的剩余速度、动能损耗以及石墨烯自身破坏的状况和应力波的传播状态研究石墨烯受到冲击时的响应。结果表明:不同形状弹丸冲击石墨烯的剩余速度和动能消耗随冲击速度的变化大致可分为3个区域,其中球形和半球形弹丸冲击情况类似,柱形弹丸的差异性较大;柱形弹丸对石墨烯的破坏要强于球形和半球形弹丸,分形理论模型能够较好地量化描述石墨烯破孔样貌;柱形弹丸自身平头部产生的“屏障效应”能够较好地解释其侵彻单层和双层石墨烯的弹道极限速度分别小于和接近球形和半球形冲击时的弹道极限速度;同种形状下,弹丸结构尺寸比例增大,弹丸侵彻能力增强,但尺寸比增大所带来的优势不具有持续增强性。Abstract: In order to explore the influence of projectile geometry on the dynamic mechanical response of graphene, two projectile designs with different shapes and different structural size ratios under the same shape have been considered using molecular dynamics simulation. The mechanical response of single/multi-layer graphene under impact was studied by characterizing the residual velocity of the projectile, kinetic energy consumption, the damage state of graphene and the propagation state of stress wave. The results show that the residual velocity and kinetic energy consumption of different shapes of projectiles impacting graphene can be roughly divided into three regions with the change of impact velocity. The impact of spherical and hemispherical projectiles is similar, but cylindrical projectiles exhibits large difference. The damage of graphene by cylindrical projectiles is stronger than those by spherical and hemispherical projectiles, and the fractal theory model can quantitatively describe the morphology of graphene holes. The “barrier effect” generated by the flat head of cylindrical projectiles can better explain the ballistic limit velocities of penetrating monolayer and bilayer graphene, which are lower than or close to those of spherical and hemispherical impact, respectively. For the same shape of hemispherical projectile, the penetration capability increases with the increase of the size ratio, but the enhancing effect brought about by the increase of the size ratio does not last continuously.
-
表 1 不同形状弹丸冲击不同层数石墨烯的弹道极限速度
Table 1. Ballistic limit velocities of different shape projectiles impacting different layers of graphene
Shape of projectile vbl/(m·s−1) Single-layer Double-layer Triple-layer Quadruple-layer Spherical 3360 3890 4230 4470 Hemispherical 3330 3740 4180 4450 Cylindrical 2950 3860 4660 5250 -
[1] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene [J]. Solid State Communications, 2008, 146(9/10): 351–355. doi: 10.1016/j.ssc.2008.02.024 [2] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902–907. doi: 10.1021/nl0731872 [3] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385–388. doi: 10.1126/science.1157996 [4] 陈济桁. 石墨烯在防弹领域的发展现状和产业应用简析 [J]. 新材料产业, 2021(4): 44–48. doi: 10.19599/j.issn.1008-892x.2021.04.012 [5] 武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景 [J]. 航空材料学报, 2019, 39(5): 34–44. doi: 10.11868/j.issn.1005-5053.2019.000097WU Y, WANG X D, LIU D, et al. Development and application analysis of ceramic composites armor for helicopter [J]. Journal of Aeronautical Materials, 2019, 39(5): 34–44. doi: 10.11868/j.issn.1005-5053.2019.000097 [6] LIOU J C, JOHNSON N L. Risks in space from orbiting debris [J]. Science, 2006, 311(5759): 340–341. doi: 10.1126/science.112133 [7] LEE J H, LOYA P E, LOU J, et al. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration [J]. Science, 2014, 346(6213): 1092–1096. doi: 10.1126/science.1258544 [8] AKTULGA H M, FOGARTY J C, PANDIT S A, et al. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques [J]. Parallel Computing, 2012, 38(4/5): 245–259. doi: 10.1016/j.parco.2011.08.005 [9] XIA K, ZHAN H F, HU D A, et al. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile [J]. Scientific Reports, 2016, 6: 33139. doi: 10.1038/srep33139 [10] HAQUE B Z, CHOWDHURY S C, GILLESPIE J W JR. Molecular simulations of stress wave propagation and perforation of graphene sheets under transverse impact [J]. Carbon, 2016, 102: 126–140. doi: 10.1016/j.carbon.2016.02.033 [11] QIU Y, ZHANG Y, ADEMILOYE A S, et al. Molecular dynamics simulations of single-layer and rotated double-layer graphene sheets under a high velocity impact by fullerene [J]. Computational Materials Science, 2020, 182: 109798. doi: 10.1016/j.commatsci.2020.109798 [12] MENG Z X, SINGH A, QIN X, et al. Reduced ballistic limit velocity of graphene membranes due to cone wave reflection [J]. Extreme Mechanics Letters, 2017, 15: 70–77. doi: 10.1016/j.eml.2017.06.001 [13] 吴凯, 王涛, 沈杰. 不同结构穿甲弹弹头侵彻金属靶板性能分析 [J]. 机械设计与制造工程, 2014, 43(1): 31–34. doi: 10.3969/j.issn.2095-509X.2014.01.008WU K, WANG T, SHEN J. The performance analysis of different structure metal target board resistance to armour-piercing bullet [J]. Manufacturing Information Engineering of China, 2014, 43(1): 31–34. doi: 10.3969/j.issn.2095-509X.2014.01.008 [14] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039 [15] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012 [16] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33–38. doi: 10.1016/0263-7855(96)00018-5 [17] STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. The Journal of Chemical Physics, 2000, 112(14): 6472–6486. doi: 10.1063/1.481208 [18] BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 783–802. doi: 10.1088/0953-8984/14/4/312 [19] 韩同伟, 贺鹏飞, 王健, 等. 单层石墨烯薄膜拉伸变形的分子动力学模拟 [J]. 新型炭材料, 2010, 25(4): 261–266.HAN T W, HE P F, WANG J, et al. Molecular dynamics simulation of a single graphene sheet under tension [J]. New Carbon Materials, 2010, 25(4): 261–266. [20] ZHANG H, LIU Z W, ZHONG X C, et al. Lennard-Jones interatomic potentials for the allotropes of carbon [EB/OL]. (2018−07−01). https://arxiv.org/abs/1805.10614. [21] 涂新斌, 王思敬. 图像分析的颗粒形状参数描述 [J]. 岩土工程学报, 2004, 26(5): 659–662. doi: 10.3321/j.issn:1000-4548.2004.05.018TU X B, WANG S J. Particle shape descriptor in digital image analysis [J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 659–662. doi: 10.3321/j.issn:1000-4548.2004.05.018 [22] MENG Z X, HAN J L, QIN X, et al. Spalling-like failure by cylindrical projectiles deteriorates the ballistic performance of multi-layer graphene plates [J]. Carbon, 2018, 126: 611–619. doi: 10.1016/j.carbon.2017.10.068