HMX晶体高温相变及裂纹对点火的影响

随志磊 胡秋实 尚海林 傅华 郑贤旭

随志磊, 胡秋实, 尚海林, 傅华, 郑贤旭. HMX晶体高温相变及裂纹对点火的影响[J]. 高压物理学报, 2022, 36(3): 030104. doi: 10.11858/gywlxb.20220550
引用本文: 随志磊, 胡秋实, 尚海林, 傅华, 郑贤旭. HMX晶体高温相变及裂纹对点火的影响[J]. 高压物理学报, 2022, 36(3): 030104. doi: 10.11858/gywlxb.20220550
SUI Zhilei, HU Qiushi, SHANG Hailin, FU Hua, ZHENG Xianxu. Influence of High Temperature Phase Transformation and Cracks on Ignition of HMX Crystal[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030104. doi: 10.11858/gywlxb.20220550
Citation: SUI Zhilei, HU Qiushi, SHANG Hailin, FU Hua, ZHENG Xianxu. Influence of High Temperature Phase Transformation and Cracks on Ignition of HMX Crystal[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030104. doi: 10.11858/gywlxb.20220550

HMX晶体高温相变及裂纹对点火的影响

doi: 10.11858/gywlxb.20220550
基金项目: 科学挑战专题(TZ2016001);冲击波物理与爆轰物理重点实验室基金(2021JCJQLB05708)
详细信息
    作者简介:

    随志磊(1986-),男,博士,助理研究员,主要从事含能材料的微细观结构与爆轰性能研究.E-mail:suizhilei179@126.com

    通讯作者:

    郑贤旭(1977-),男,博士,研究员,主要从事含能材料物性及实验诊断技术研究.E-mail:zxxgoal109@sina.com

  • 中图分类号: O521.2; O347

Influence of High Temperature Phase Transformation and Cracks on Ignition of HMX Crystal

  • 摘要: 炸药晶体的相结构、相变过程以及相变引起的微结构变化对炸药性能有重要影响。为研究HMX晶体的高温相变及其引起的裂纹对点火的影响,开展了HMX晶体的原位高温拉曼光谱、X射线衍射实验以及落锤实验。通过拉曼光谱和X射线衍射谱识别出不同温度加载和后处理方法对HMX晶体相结构和微结构的影响。制备了3类含有不同相结构和裂纹的HMX样品,实现了相结构和裂纹对点火影响的解耦。落锤实验结果显示,对于3类HMX晶体,按照敏感度由高到低排序依次为含裂纹的β-δ混相、含裂纹的β相、无裂纹的β相。最后,分析了高温相变和裂纹提高HMX晶体感度的原因。

     

  • 图  落锤撞击实验装置

    Figure  1.  Drop weight impact experiment device

    图  HMX晶体的高温拉曼光谱 (a) 和XRD谱 (b)

    Figure  2.  High temperature Raman spectra (a) and XRD patterns (b) of HMX crystals

    图  影像测量仪扫描图像

    Figure  3.  Scan images obtained by image measuring instrument

    图  3类样品的点火情况与落高之间的关系(Ⅰ类样品,圆形;Ⅱ类样品,三角形;Ⅲ类样品,菱形)

    Figure  4.  Relationship between the ignition conditions of the three types of samples and the drop height (Samples of type I, round; samples of type Ⅱ, triangle; samples of type Ⅲ, rhombus)

    图  Ⅰ类样品5的速度和压力时程曲线(H=85 cm,未点火)

    Figure  5.  Velocity-time and pressure-time curves of type Ⅰ sample 5 (H=85 cm, no ignition)

    图  Ⅰ类样品5的动态变形图像

    Figure  6.  Dynamically deform images of type Ⅰ sample 5

    图  Ⅱ类样品12的速度和压力时程曲线(H=55 cm,点火)

    Figure  7.  Velocity-time and pressure-time curves of type Ⅱ sample 12 (H=55 cm, ignition)

    图  Ⅱ类样品12的动态点火图像

    Figure  8.  Dynamically ignition images of type Ⅱ sample 12

    图  Ⅲ类样品的压力时程曲线

    Figure  9.  Pressure-time curves of type Ⅲ samples

    图  10  Ⅲ类样品22的动态点火图像

    Figure  10.  Dynamically ignition images of type Ⅲ sample 22

    表  1  HMX晶体的退火及存放条件

    Table  1.   Heating and storage conditions of HMX crystals

    Sample typeSample No.Annealing temperatureTreatments after annealingStatus of the sample
    1−5Without annealingβ-phase without crack
    6−15≥190 ℃Experiment within 24 h of annealingβ- and δ-phase with cracks
    16−24≥190 ℃Humidifying and experiment after 30 dβ-phase with cracks
    下载: 导出CSV

    表  2  不同HMX晶体的落锤高度

    Table  2.   Drop heights of different HMX crystals

    TypeSample No.H/cm TypeSample No.H/cm TypeSample No.H/cm
    130 930 1720
    23510301830
    35511301930
    46012552040
    58513602140
    61514652240
    71515852345
    82016102460
    下载: 导出CSV
  • [1] 郜婵, 孙晓宇, 梁文韬, 等. RDX、HMX及CL-20晶体的高温高压相变研究进展 [J]. 含能材料, 2020, 28(9): 902–914. doi: 10.11943/CJEM2020088

    GAO C, SUN X Y, LIANG W T, et al. Review on phase transition of RDX, HMX and CL-20 crystals under high temperature and high pressure [J]. Chinese Journal of Energetic Materials, 2020, 28(9): 902–914. doi: 10.11943/CJEM2020088
    [2] FABBIANI F P A, PULHAM C R. High-pressure studies of pharmaceutical compounds and energetic materials [J]. Chemical Society Reviews, 2006, 35(10): 932–942. doi: 10.1039/b517780b
    [3] 胡惟佳. 高温下炸药晶体尺度相变效应及损伤点火响应研究 [D]. 北京: 北京理工大学, 2020.

    HU W J. Phase transition and damage ignition response of explosives under high temperature at the crystal scale [D]. Beijing: Beijing Institute of Technology, 2020.
    [4] GOETZ F, BRILL T B, FERRARO J R. Pressure dependence of the Raman and infrared spectra of α-, β-, γ-, and δ- octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [J]. The Journal of Physical Chemistry, 1978, 82(17): 1912–1917. doi: 10.1021/j100506a011
    [5] MAIN P, COBBLEDICK R E, SMALL R W H. Structure of the fourth form of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetraaza-cyclooctane (γ-HMX), 2C4H8N8O8·0.5H2O [J]. Acta Crystallographica Section C, 1985, 41(9): 1351–1354. doi: 10.1107/S0108270185007739
    [6] CADY H H, SMITH L C. Studies on the polymorphs of HMX: LAMS-2652 TID-4500 [R]. Los Alamos: Los Alamos National Laboratory, 1962.
    [7] HENSON B F, ASAY B, SANDER R K, et al. Dynamic measurement of the HMX β-δ phase transition by second harmonic generation [J]. Physical Review Letters, 1999, 82(6): 1213–1216. doi: 10.1103/PhysRevLett.82.1213
    [8] SMILOWIZT L, HENSON B F, GREENFIELD M, et al. On the nucleation mechanism of the β-δ phase transition in the energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [J]. Journal of Chemical Physics, 2004, 121(11): 5550–5552. doi: 10.1063/1.1782491
    [9] SMILOWITZ L, HENSON B F, ASAY B W, et al. The β-δ phase transition in the energetic nitramine-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: kinetics [J]. Journal of Chemical Physics, 2002, 117(8): 3789−3798.
    [10] WEESE R K, MAIENSCHEIN J L, PERRINO C T. Kinetics of the βδ solid solid phase transition of HMX, octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [C]//The 3rd International Heat Flow Calorimetry for Energetic Materials Symposium. French Lick, 2001: 18−20.
    [11] XUE C, SUN J, KANG B, et al. The β-δ phase transition and thermal expansion of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4): 333–338. doi: 10.1002/prep.200900036
    [12] WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition [J]. Journal of Applied Physics, 2015, 118(5): 055901. doi: 10.1063/1.4927614
    [13] 闫冠云, 田强, 黄朝强, 等. 热损伤奥克托金(HMX)缺陷的X射线小角散射研究 [J]. 物理学报, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101

    YAN G Y, TIAN Q, HUANG C Q, et al. A small-angle X-ray scattering study of micro-defects in thermally treated HMX [J]. Acta Physica Sinica, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [14] 文玉史, 文雯, 代晓淦, 等. 相变与微裂纹对HMX晶体高温下撞击感度的影响机制 [J]. 含能材料, 2019, 27(3): 184−189.

    WEN Y S, WEN W, DAI X G, et al. Influence mechanism of phase transition and micro cracks on impact sensitivity of HMX crystal at high temperature [J]. Chinese Journal of Energetic Materials, 2019, 27(3): 184−189.
    [15] LI H, LI Y, BAI L F, et al. Acceleration of δ- to β-HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958−6964.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  413
  • PDF下载量:  62
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-04-27
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回