Dynamic Response and Damage Failure Behavior of TC4 Titanium Alloy Hollow Fan Blade
-
摘要: 航空发动机是鸟撞事件中的高概率、高危部件,对风扇叶片相关抗鸟撞问题的研究具有重要意义。采用三维数字图像相关(3D-DIC)法开展了TC4钛合金空心结构风扇叶片在不同高度下的静置鸟撞试验。此外,基于Johnson-Cook动态本构模型与损伤失效理论建立了相关计算模型,较好地描述并验证了航空发动机风扇叶片在鸟撞过程中的动态变形响应过程与失效情况。结果表明:鸟撞速度的变化主要影响叶片变形的量级,而不会引起叶片特征模态的改变;在鸟撞过程中,叶根是应力/应变局域化显著区域,更容易发生损伤失效;随着鸟撞位置的提高,空心结构风扇叶片在叶根处失效断裂对应的临界鸟撞速度逐渐提高,整体结构抗鸟撞性能越好。试验结果及相应的数值模拟为TC4钛合金空心结构风扇叶片的抗鸟撞设计提供了一定的参考。Abstract: Aero-engine is a high probability and high-risk component of bird strike events, which is of great significance to the study of bird strike resistance of fan blades. In this paper, based on the three-dimensional digital image correlation (DIC) in-situ strain measurement method, the static bird strike tests of TC4 titanium alloy hollow structure fan blades at different heights are carried out. In addition, a simulation model is established based on Johnson-Cook dynamic constitutive model and damage failure theory to better verify and describe the dynamic deformation response process and failure situation of aero-engine fan blades during bird strikes. It is found that the variation of bird strike velocity mainly affects the magnitude of blade deformation, but does not cause the change of blade characteristic mode. In the bird strike process, the middle root is a significant area of stress/strain localization, which is more prone to damage failure. It is found that with the increase of bird impact position, the critical bird impact velocity corresponding to the failure of the hollow fan blade at the blade root increases gradually, and the bird impact resistance of the whole structure is better. This experiment and the corresponding simulation study provide a certain reference for the anti-bird impact design of the TC4 titanium alloy hollow structure fan blade.
-
Key words:
- TC4 titanium alloy /
- bird strike /
- fan blade /
- dynamic response /
- damage failure
-
图 1 (a) 钛合金空心风扇叶片实物及应变片、3D-DIC位移测点位置;(b) 各应变片的横纵方向分布;(c) 叶片横剖面上空心结构示意图
Figure 1. (a) Titanium alloy hollow fan blade and the position of the strain gauges and 3D-DIC displacement measuring point; (b) specific locations of the horizontal and vertical distribution of the strain gauges; (c) schematic diagram of the hollow structure along the cross section of the blade
表 1 不同高度下的叶片鸟撞试验结果及其对应的最大叶尖位移
Table 1. Loading conditions of the tests under different impacting heights and their corresponding maximum displacement of the blade’s tip
No. Height position Bird mass/kg Ideal speed/
(m·s–1)Actual speed/
(m·s–1)Kinetic
energy/kJMaximum
displacement/mmWhether failure 1 10%h 0.3146 158.6 163.0 4.18 24.599 No 2 30%h 0.3059 207.5 206.2 6.50 34.335 No 3 30%h 0.3142 207.5 211.9 7.05 44.206 No 4 50%h 0.3153 257.0 250.0 9.85 61.928 No 5 50%h 0.3140 257.0 263.0 10.86 86.582 No 6 50%h 0.3143 257.0 256.4 10.33 104.596 No 7 50%h 0.3119 257.0 251.3 9.85 86.220 No 8 70%h 0.3150 307.3 304.9 14.64 161.123 No 9 70%h 0.3149 307.3 306.8 14.82 162.187 No Density/(kg·m−3) Elastic modulus/MPa Poisson’s ratio Yield stress/MPa Failure strain Tangent modulus/MPa 928 68 0.49 0.69 1.25 5 表 3 TC4钛合金Johnson-Cook本构及损伤失效材料参数[25-26]
Table 3. Parameters of the Johnson-Cook model for the TC4 titanium alloy[25-26]
ρ/(kg·m−3) E/GPa μ A0/MPa B0/MPa C Tm/K n 4.43×103 135 0.33 1060 1090 0.0117 1 878 0.884 m $\dot \varepsilon $0/s−1 D1 D2 D3 D4 D5 1.1 4×10−4 −0.09 0.27 0.48 0.014 3.87 表 4 不同撞击高度和撞击速度下钛合金风扇叶片的叶根同一单元的最大等效塑性应变
Table 4. Maximum equivalent plastic strain of the same element of the model under different impacting heights and velocities
Height Maximum equivalent plastic strain 3.82 kJ 6.64 kJ 10.24 kJ 14.61 kJ 19.75 kJ 10%h 6.12% Fail Fail Fail Fail 30%h 9.01% 22.78% Fail Fail Fail 50%h 6.92% 15.83% 26.60% Fail Fail 70%h 4.67% 9.45% 11.63% 12.89% Fail Note: The “Fail” in the table indicates that the fan had been damaged under the corresponding loading conditions. -
[1] DOLBEER R A, BEGIER M, MILLER P, et al. Wildlife strikes to civil aircraft in the United States, 1990–2019 [R]. Washington.D C, USA: Federal Aviation Administration, 2021. [2] 沈尔明, 王刚, 王宇, 等. 鸟撞对商用发动机风扇叶片选材影响 [J]. 航空动力, 2021(5): 68–71.SHEN E M, WANG G, WANG Y, et al. The influence of bird strike to the material selection of commercial aero engine fan blades [J]. Aerospace Power, 2021(5): 68–71. [3] 刘业胜, 曹玮, 郭福水, 等. 钛合金空心风扇叶片加工误差对其性能影响的初步分析 [C]//超塑性学术研讨会. 大连, 2013: 58−64.LIU Y S, CAO W, GUO F S, et al. Preliminary analysis of the effect of machining error on performance of hollow fan blade of titanium alloy [C]//Symposium on Superplasticity. Dalian, 2013: 58−64. [4] 郭应文, 周雄, 代磊, 等. 鸟撞航空发动机风扇叶片动态响应数值模拟 [C]//2019年(第四届)中国航空科学技术大会. 沈阳: 中国航空学会, 2019: 7.GUO Y W, ZHOU X, DAI L, et al. Numerical simulation of dynamic response of bird impact on aero-engine fan blade [C]//2019 (the Fourth) China Aviation Science and Technology Conference. Shenyang: Chinese Society of Aeronautics and Astronautics, 2019: 7. [5] 张海洋, 蔚夺魁, 王相平, 等. 鸟撞击风扇转子叶片损伤模拟与试验研究 [J]. 推进技术, 2015, 36(9): 1382–1388. doi: 10.13675/j.cnki.tjjs.2015.09.015ZHANG H Y, YU D K, WANG X P, et al. Numerical and experimental investigation of damage of bird impact on fan blades [J]. Journal of Propulsion Technology, 2015, 36(9): 1382–1388. doi: 10.13675/j.cnki.tjjs.2015.09.015 [6] 李超, 杨嘉陵, 张晓鹏, 等. 鸟撞叶片瞬态响应的理论分析和数值模拟 [C]//北京力学会第17届学术年会. 北京: 北京力学会, 2011: 2.LI C, YANG J L, ZHANG X P, et al. Theoretical analysis and numerical simulation of transient response of bird strike blade [C]//Proceedings of the 17th Annual Conference of Beijing Dynamic Society. Beijing: Beijing Mechanics Society, 2011: 2. [7] 慕琴琴, 黄文超, 燕群, 等. 旋转离心应力对叶片鸟撞响应的影响 [J]. 航空计算技术, 2014, 44(6): 55–58. doi: 10.3969/j.issn.1671-654X.2014.06.013MU Q Q, HUANG W C, YAN Q, et al. Effects of centrifugal stress on bird striking response of blades [J]. Aeronautical Computing Technique, 2014, 44(6): 55–58. doi: 10.3969/j.issn.1671-654X.2014.06.013 [8] 张海洋, 王相平, 杜少辉, 等. 航空发动机风扇叶片的抗鸟撞设计 [J]. 航空动力学报, 2020, 35(6): 1157–1168. doi: 10.13224/j.cnki.jasp.2020.06.005ZHANG H Y, WANG X P, DU S H, et al. Design for anti-bird impact of aero-engine fan blade [J]. Journal of Aerospace Power, 2020, 35(6): 1157–1168. doi: 10.13224/j.cnki.jasp.2020.06.005 [9] 刘志远. 航空发动机风扇叶片鸟撞冲击动力学响应研究 [D]. 天津: 天津大学, 2019: 79.LIU Z Y. Study on impact dynamic responses of aero engine fan blade after bird striking [D]. Tianjin: Tianjin University, 2019: 79. [10] 马力, 姜甲玉, 薛庆增. 航空发动机第1级风扇叶片鸟撞研究 [J]. 航空发动机, 2014, 40(2): 65–69. doi: 10.13477/j.cnki.aeroengine.2014.02.013MA L, JIANG J Y, XUE Q Z. Research on bird impact of aeroengine first stage fan [J]. Aeroengine, 2014, 40(2): 65–69. doi: 10.13477/j.cnki.aeroengine.2014.02.013 [11] 赵龙, 胡靖宇, 贾瑞, 等. 某型开式转子发动机桨扇叶片抗鸟撞数值模拟分析 [J]. 机械管理开发, 2021, 36(1): 43–45. doi: 10.16525/j.cnki.cn14-1134/th.2021.01.019ZHAO L, HU J Y, JIA R, et al. Numerical simulation analysis of bird collision resistance of an open rotor engine fan blade [J]. Mechanical Management and Development, 2021, 36(1): 43–45. doi: 10.16525/j.cnki.cn14-1134/th.2021.01.019 [12] 郭鹏, 刘志远, 张桂昌, 等. 鸟撞过程中撞击位置与撞击姿态对风扇叶片损伤影响研究 [J]. 振动与冲击, 2021, 40(12): 124–131. doi: 10.13465/j.cnki.jvs.2021.12.016GUO P, LIU Z Y, ZHANG G C, et al. Study on effect of bird impact position and attitude on fan blade damage [J]. Journal of Vibration and Shock, 2021, 40(12): 124–131. doi: 10.13465/j.cnki.jvs.2021.12.016 [13] 刘建明, 蒋向华. 材料参数对叶片鸟撞动响应影响数值模拟 [J]. 航空发动机, 2010, 36(5): 36–38. doi: 10.3969/j.issn.1672-3147.2010.05.009LIU J M, JIANG X H. Numerical simulation of blade material effect on dynamic response of bird impact on flat blade [J]. Aeroengine, 2010, 36(5): 36–38. doi: 10.3969/j.issn.1672-3147.2010.05.009 [14] 黄福增, 刘永泉, 张东明, 等. 发动机风扇转子旋转状态下鸟撞试验研究 [J]. 实验力学, 2020, 35(6): 1136–1146. doi: 10.7520/1001-4888-19-085HUANG F Z, LIU Y Q, ZHANG D M, et al. Investigation on bird-strike test of gas turbine rotating fan blade [J]. Journal of Experimental Mechanics, 2020, 35(6): 1136–1146. doi: 10.7520/1001-4888-19-085 [15] 刘小川, 郭军, 孙侠生, 等. 用于鸟撞试验的仿真鸟弹研究 [J]. 实验力学, 2012, 27(5): 623–629.LIU X C, GUO J, SUN X S, et al. Investigation on the artificial bird projectile used in bird strike test [J]. Journal of Experimental Mechanics, 2012, 27(5): 623–629. [16] 刘洋, 王亮, 郭军. 铝包边对复合材料风扇叶片抗鸟撞能力的影响 [J]. 兵工学报, 2018, 39(Suppl 1): 114–120.LIU Y, WANG L, GUO J. Infuence of aluminum package edge on bird-stike resistance of composite fan blades of an engine [J]. Acta Armamentarii, 2018, 39(Suppl 1): 114–120. [17] SCHREIER H, ORTEU J J, SUTTON M A. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications [M]. New York: Springer, 2009: 1−321. [18] 陈振英. 基于数字图像相关法的应变测量研究 [D]. 上海: 上海交通大学, 2013.CHEN Z Y. Strain measurement research based on digital image correlation method [D]. Shanghai: Shanghai Jiaotong University, 2013. [19] 张顺庆, 高晨家, 张龙. 数字图像相关技术在应力应变测量中的发展与最新应用 [J]. 影像科学与光化学, 2017, 35(2): 193–198. doi: 10.7517/j.issn.1674-0475.2017.02.193ZHANG S Q, GAO C J, ZHANG L. The development and latest applications of digital image correlation in stress and strain measurement [J]. Imaging Science and Photochemistry, 2017, 35(2): 193–198. doi: 10.7517/j.issn.1674-0475.2017.02.193 [20] 贾林, 李从富, 邹学韬, 等. 鸟撞冲击下TC4钛合金平板的变形和破坏 [J]. 高压物理学报, 2020, 34(4): 044102. doi: 10.11858/gywlxb.20200515JIA L, LI C F, ZOU X T, et al. Deformation and destruction of TC4 titanium alloy plate under the bird impact [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044102. doi: 10.11858/gywlxb.20200515 [21] 曹源, 侯亮, 胡寿丰. 航空发动机鸟撞分析的人工鸟本构参数研究 [C]//2015航空试验测试技术学术交流会论文集. 北京: 中国航空学会, 2015: 5.CAO Y, HOU L, HU S F. Constitutive models of gelatin bird for bird strike in aero engine [C]//Proceedings of 2015 Aviation Test Technology Academic Exchange Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 5. [22] 寇剑锋, 徐绯, 纪三红, 等. 鸟体姿态对结构抗鸟撞性能的影响 [J]. 爆炸与冲击, 2017, 37(5): 937–944. doi: 10.11883/1001-1455(2017)05-0937-08KOU J F, XU F, JI S H, et al. Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures [J]. Explosion and Shock Waves, 2017, 37(5): 937–944. doi: 10.11883/1001-1455(2017)05-0937-08 [23] 于永强, 李成, 铁瑛. 基于SPH方法的鸟撞复合材料层合板数值分析 [J]. 玻璃钢/复合材料, 2017(5): 48–52. doi: 10.3969/j.issn.1003-0999.2017.05.008YU Y Q, LI C, TIE Y. SPH-based numercial simulation of composite material under bird impact [J]. Fiber Reinforced Plastics/Composites, 2017(5): 48–52. doi: 10.3969/j.issn.1003-0999.2017.05.008 [24] 杨扬, 曾毅, 汪冰峰. 基于Johnson-Cook模型的TC16钛合金动态本构关系 [J]. 中国有色金属学报, 2008, 18(3): 505–510. doi: 10.3321/j.issn:1004-0609.2008.03.021YANG Y, ZENG Y, WANG B F. Dynamic constitutive relationship of TC16 titanium alloy based on Johnson-Cook model [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(3): 505–510. doi: 10.3321/j.issn:1004-0609.2008.03.021 [25] KAY G. Failure modeling of titanium-6Al-4V and 2024-T3 aluminum with the Johnson-Cook material model [R]. Lawrence Livermore National Laboratory, 2002. [26] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. doi: 10.13465/j.cnki.jvs.2016.22.024HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. doi: 10.13465/j.cnki.jvs.2016.22.024