TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效

张永强 贾林

张永强, 贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效[J]. 高压物理学报, 2022, 36(5): 054103. doi: 10.11858/gywlxb.20220546
引用本文: 张永强, 贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效[J]. 高压物理学报, 2022, 36(5): 054103. doi: 10.11858/gywlxb.20220546
ZHANG Yongqiang, JIA Lin. Dynamic Response and Damage Failure Behavior of TC4 Titanium Alloy Hollow Fan Blade[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054103. doi: 10.11858/gywlxb.20220546
Citation: ZHANG Yongqiang, JIA Lin. Dynamic Response and Damage Failure Behavior of TC4 Titanium Alloy Hollow Fan Blade[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054103. doi: 10.11858/gywlxb.20220546

TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效

doi: 10.11858/gywlxb.20220546
详细信息
    作者简介:

    张永强(1977-),男,硕士,高级工程师,主要从事航空发动机型号现场强度测试、航空发动机故障诊断与分析研究. E-mail:zhangyqnwpu@163.com

  • 中图分类号: O347

Dynamic Response and Damage Failure Behavior of TC4 Titanium Alloy Hollow Fan Blade

  • 摘要: 航空发动机是鸟撞事件中的高概率、高危部件,对风扇叶片相关抗鸟撞问题的研究具有重要意义。采用三维数字图像相关(3D-DIC)法开展了TC4钛合金空心结构风扇叶片在不同高度下的静置鸟撞试验。此外,基于Johnson-Cook动态本构模型与损伤失效理论建立了相关计算模型,较好地描述并验证了航空发动机风扇叶片在鸟撞过程中的动态变形响应过程与失效情况。结果表明:鸟撞速度的变化主要影响叶片变形的量级,而不会引起叶片特征模态的改变;在鸟撞过程中,叶根是应力/应变局域化显著区域,更容易发生损伤失效;随着鸟撞位置的提高,空心结构风扇叶片在叶根处失效断裂对应的临界鸟撞速度逐渐提高,整体结构抗鸟撞性能越好。试验结果及相应的数值模拟为TC4钛合金空心结构风扇叶片的抗鸟撞设计提供了一定的参考。

     

  • 图  (a) 钛合金空心风扇叶片实物及应变片、3D-DIC位移测点位置;(b) 各应变片的横纵方向分布;(c) 叶片横剖面上空心结构示意图

    Figure  1.  (a) Titanium alloy hollow fan blade and the position of the strain gauges and 3D-DIC displacement measuring point; (b) specific locations of the horizontal and vertical distribution of the strain gauges; (c) schematic diagram of the hollow structure along the cross section of the blade

    图  (a) 试验设备布置示意图及(b)部分试验设备布置现场(包括3D-DIC系统)

    Figure  2.  (a) Schematic diagram of the test equipment and (b) part of the test equipment layout site (including the 3D-DIC system)

    图  鸟撞速度为306.8 m/s、高度70%h时的图像:(a)鸟弹飞行姿态,(b)鸟撞过程俯视图,(c)~(e)撞击面

    Figure  3.  (a) Flight posture of the gelatin bird,(b) snapshot of the bird-strike process from the top view and (c)-(e) snapshot of the impacting surface when the bird strike velocity is 306.8 m/s and the altitude is 70%h

    图  叶片各测点的应变时程曲线

    Figure  4.  Strain history obtained by strain gauges on the blade

    图  TC4钛合金风扇叶片鸟撞计算模型

    Figure  5.  Simulation model of the TC4 titanium fanblade under the bird impact

    图  试验与数值模拟得到的鸟撞过程中风扇叶片两叶尖的时间-位移曲线对比

    Figure  6.  Comparison between experimental and numerical simulation results of time-displacement curvesof two fan blades during bird strike

    图  (a)~(d)当鸟撞速度为307.3 m/s、撞击高度为70%h时不同时刻总位移云图,(e) 不同鸟撞速度下叶尖的位移时程曲线

    Figure  7.  (a)-(d) Displacement maps under velocity of 307.3 m/s and height of 70%h at different time;(e) displacement-time history curves of leaf tip at different bird strike velocities

    图  鸟撞速度为157.3 m/s、不同撞击高度(10%h、30%h、50%h、70%h)下钛合金空心风扇叶片的等效应力场和等效塑性应变场分布

    Figure  8.  Equivalent stress and plastic strain field of the titanium hollow fan blade under different impacting heights at velocity of 157.3 m/s and different impacting height (10%h, 30%h, 50%h and 70%h), respectively

    图  鸟撞能量为6.64 kJ、鸟撞高度为10%h时风扇叶片的等效应变场和叶根的典型损伤断裂失效模式

    Figure  9.  Equivalent plastic strain of the blade and the typical failure mode along the root under a impacting energy of 6.64 kJ and height of 10%h

    表  1  不同高度下的叶片鸟撞试验结果及其对应的最大叶尖位移

    Table  1.   Loading conditions of the tests under different impacting heights and their corresponding maximum displacement of the blade’s tip

    No.Height positionBird mass/kgIdeal speed/
    (m·s–1
    Actual speed/
    (m·s–1
    Kinetic
    energy/kJ
    Maximum
    displacement/mm
    Whether failure
    110%h0.3146158.6163.04.1824.599No
    230%h0.3059207.5206.26.5034.335No
    330%h0.3142207.5211.97.0544.206No
    450%h0.3153257.0250.09.8561.928No
    550%h0.3140257.0263.010.8686.582No
    650%h0.3143257.0256.410.33104.596No
    750%h0.3119257.0251.39.8586.220No
    870%h0.3150307.3304.914.64161.123No
    970%h0.3149307.3306.814.82162.187No
    下载: 导出CSV

    表  2  鸟体材料参数[20]

    Table  2.   Material parameters of the gelatin bird[20]

    Density/(kg·m−3)Elastic modulus/MPaPoisson’s ratioYield stress/MPaFailure strainTangent modulus/MPa
    928680.490.691.255
    下载: 导出CSV

    表  3  TC4钛合金Johnson-Cook本构及损伤失效材料参数[25-26]

    Table  3.   Parameters of the Johnson-Cook model for the TC4 titanium alloy[25-26]

    ρ/(kg·m−3)E/GPaμA0/MPaB0/MPaCTm/Kn
    4.43×1031350.33106010900.01171 8780.884
    m$\dot \varepsilon $0/s−1D1D2D3D4D5
    1.14×10−4−0.090.270.480.0143.87
    下载: 导出CSV

    表  4  不同撞击高度和撞击速度下钛合金风扇叶片的叶根同一单元的最大等效塑性应变

    Table  4.   Maximum equivalent plastic strain of the same element of the model under different impacting heights and velocities

    HeightMaximum equivalent plastic strain
    3.82 kJ6.64 kJ10.24 kJ14.61 kJ19.75 kJ
    10%h6.12%FailFailFailFail
    30%h9.01%22.78%FailFailFail
    50%h6.92%15.83%26.60%FailFail
    70%h4.67%9.45%11.63%12.89%Fail
    Note: The “Fail” in the table indicates that the fan had been damaged under the corresponding loading conditions.
    下载: 导出CSV
  • [1] DOLBEER R A, BEGIER M, MILLER P, et al. Wildlife strikes to civil aircraft in the United States, 1990–2019 [R]. Washington.D C, USA: Federal Aviation Administration, 2021.
    [2] 沈尔明, 王刚, 王宇, 等. 鸟撞对商用发动机风扇叶片选材影响 [J]. 航空动力, 2021(5): 68–71.

    SHEN E M, WANG G, WANG Y, et al. The influence of bird strike to the material selection of commercial aero engine fan blades [J]. Aerospace Power, 2021(5): 68–71.
    [3] 刘业胜, 曹玮, 郭福水, 等. 钛合金空心风扇叶片加工误差对其性能影响的初步分析 [C]//超塑性学术研讨会. 大连, 2013: 58−64.

    LIU Y S, CAO W, GUO F S, et al. Preliminary analysis of the effect of machining error on performance of hollow fan blade of titanium alloy [C]//Symposium on Superplasticity. Dalian, 2013: 58−64.
    [4] 郭应文, 周雄, 代磊, 等. 鸟撞航空发动机风扇叶片动态响应数值模拟 [C]//2019年(第四届)中国航空科学技术大会. 沈阳: 中国航空学会, 2019: 7.

    GUO Y W, ZHOU X, DAI L, et al. Numerical simulation of dynamic response of bird impact on aero-engine fan blade [C]//2019 (the Fourth) China Aviation Science and Technology Conference. Shenyang: Chinese Society of Aeronautics and Astronautics, 2019: 7.
    [5] 张海洋, 蔚夺魁, 王相平, 等. 鸟撞击风扇转子叶片损伤模拟与试验研究 [J]. 推进技术, 2015, 36(9): 1382–1388. doi: 10.13675/j.cnki.tjjs.2015.09.015

    ZHANG H Y, YU D K, WANG X P, et al. Numerical and experimental investigation of damage of bird impact on fan blades [J]. Journal of Propulsion Technology, 2015, 36(9): 1382–1388. doi: 10.13675/j.cnki.tjjs.2015.09.015
    [6] 李超, 杨嘉陵, 张晓鹏, 等. 鸟撞叶片瞬态响应的理论分析和数值模拟 [C]//北京力学会第17届学术年会. 北京: 北京力学会, 2011: 2.

    LI C, YANG J L, ZHANG X P, et al. Theoretical analysis and numerical simulation of transient response of bird strike blade [C]//Proceedings of the 17th Annual Conference of Beijing Dynamic Society. Beijing: Beijing Mechanics Society, 2011: 2.
    [7] 慕琴琴, 黄文超, 燕群, 等. 旋转离心应力对叶片鸟撞响应的影响 [J]. 航空计算技术, 2014, 44(6): 55–58. doi: 10.3969/j.issn.1671-654X.2014.06.013

    MU Q Q, HUANG W C, YAN Q, et al. Effects of centrifugal stress on bird striking response of blades [J]. Aeronautical Computing Technique, 2014, 44(6): 55–58. doi: 10.3969/j.issn.1671-654X.2014.06.013
    [8] 张海洋, 王相平, 杜少辉, 等. 航空发动机风扇叶片的抗鸟撞设计 [J]. 航空动力学报, 2020, 35(6): 1157–1168. doi: 10.13224/j.cnki.jasp.2020.06.005

    ZHANG H Y, WANG X P, DU S H, et al. Design for anti-bird impact of aero-engine fan blade [J]. Journal of Aerospace Power, 2020, 35(6): 1157–1168. doi: 10.13224/j.cnki.jasp.2020.06.005
    [9] 刘志远. 航空发动机风扇叶片鸟撞冲击动力学响应研究 [D]. 天津: 天津大学, 2019: 79.

    LIU Z Y. Study on impact dynamic responses of aero engine fan blade after bird striking [D]. Tianjin: Tianjin University, 2019: 79.
    [10] 马力, 姜甲玉, 薛庆增. 航空发动机第1级风扇叶片鸟撞研究 [J]. 航空发动机, 2014, 40(2): 65–69. doi: 10.13477/j.cnki.aeroengine.2014.02.013

    MA L, JIANG J Y, XUE Q Z. Research on bird impact of aeroengine first stage fan [J]. Aeroengine, 2014, 40(2): 65–69. doi: 10.13477/j.cnki.aeroengine.2014.02.013
    [11] 赵龙, 胡靖宇, 贾瑞, 等. 某型开式转子发动机桨扇叶片抗鸟撞数值模拟分析 [J]. 机械管理开发, 2021, 36(1): 43–45. doi: 10.16525/j.cnki.cn14-1134/th.2021.01.019

    ZHAO L, HU J Y, JIA R, et al. Numerical simulation analysis of bird collision resistance of an open rotor engine fan blade [J]. Mechanical Management and Development, 2021, 36(1): 43–45. doi: 10.16525/j.cnki.cn14-1134/th.2021.01.019
    [12] 郭鹏, 刘志远, 张桂昌, 等. 鸟撞过程中撞击位置与撞击姿态对风扇叶片损伤影响研究 [J]. 振动与冲击, 2021, 40(12): 124–131. doi: 10.13465/j.cnki.jvs.2021.12.016

    GUO P, LIU Z Y, ZHANG G C, et al. Study on effect of bird impact position and attitude on fan blade damage [J]. Journal of Vibration and Shock, 2021, 40(12): 124–131. doi: 10.13465/j.cnki.jvs.2021.12.016
    [13] 刘建明, 蒋向华. 材料参数对叶片鸟撞动响应影响数值模拟 [J]. 航空发动机, 2010, 36(5): 36–38. doi: 10.3969/j.issn.1672-3147.2010.05.009

    LIU J M, JIANG X H. Numerical simulation of blade material effect on dynamic response of bird impact on flat blade [J]. Aeroengine, 2010, 36(5): 36–38. doi: 10.3969/j.issn.1672-3147.2010.05.009
    [14] 黄福增, 刘永泉, 张东明, 等. 发动机风扇转子旋转状态下鸟撞试验研究 [J]. 实验力学, 2020, 35(6): 1136–1146. doi: 10.7520/1001-4888-19-085

    HUANG F Z, LIU Y Q, ZHANG D M, et al. Investigation on bird-strike test of gas turbine rotating fan blade [J]. Journal of Experimental Mechanics, 2020, 35(6): 1136–1146. doi: 10.7520/1001-4888-19-085
    [15] 刘小川, 郭军, 孙侠生, 等. 用于鸟撞试验的仿真鸟弹研究 [J]. 实验力学, 2012, 27(5): 623–629.

    LIU X C, GUO J, SUN X S, et al. Investigation on the artificial bird projectile used in bird strike test [J]. Journal of Experimental Mechanics, 2012, 27(5): 623–629.
    [16] 刘洋, 王亮, 郭军. 铝包边对复合材料风扇叶片抗鸟撞能力的影响 [J]. 兵工学报, 2018, 39(Suppl 1): 114–120.

    LIU Y, WANG L, GUO J. Infuence of aluminum package edge on bird-stike resistance of composite fan blades of an engine [J]. Acta Armamentarii, 2018, 39(Suppl 1): 114–120.
    [17] SCHREIER H, ORTEU J J, SUTTON M A. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications [M]. New York: Springer, 2009: 1−321.
    [18] 陈振英. 基于数字图像相关法的应变测量研究 [D]. 上海: 上海交通大学, 2013.

    CHEN Z Y. Strain measurement research based on digital image correlation method [D]. Shanghai: Shanghai Jiaotong University, 2013.
    [19] 张顺庆, 高晨家, 张龙. 数字图像相关技术在应力应变测量中的发展与最新应用 [J]. 影像科学与光化学, 2017, 35(2): 193–198. doi: 10.7517/j.issn.1674-0475.2017.02.193

    ZHANG S Q, GAO C J, ZHANG L. The development and latest applications of digital image correlation in stress and strain measurement [J]. Imaging Science and Photochemistry, 2017, 35(2): 193–198. doi: 10.7517/j.issn.1674-0475.2017.02.193
    [20] 贾林, 李从富, 邹学韬, 等. 鸟撞冲击下TC4钛合金平板的变形和破坏 [J]. 高压物理学报, 2020, 34(4): 044102. doi: 10.11858/gywlxb.20200515

    JIA L, LI C F, ZOU X T, et al. Deformation and destruction of TC4 titanium alloy plate under the bird impact [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044102. doi: 10.11858/gywlxb.20200515
    [21] 曹源, 侯亮, 胡寿丰. 航空发动机鸟撞分析的人工鸟本构参数研究 [C]//2015航空试验测试技术学术交流会论文集. 北京: 中国航空学会, 2015: 5.

    CAO Y, HOU L, HU S F. Constitutive models of gelatin bird for bird strike in aero engine [C]//Proceedings of 2015 Aviation Test Technology Academic Exchange Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 5.
    [22] 寇剑锋, 徐绯, 纪三红, 等. 鸟体姿态对结构抗鸟撞性能的影响 [J]. 爆炸与冲击, 2017, 37(5): 937–944. doi: 10.11883/1001-1455(2017)05-0937-08

    KOU J F, XU F, JI S H, et al. Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures [J]. Explosion and Shock Waves, 2017, 37(5): 937–944. doi: 10.11883/1001-1455(2017)05-0937-08
    [23] 于永强, 李成, 铁瑛. 基于SPH方法的鸟撞复合材料层合板数值分析 [J]. 玻璃钢/复合材料, 2017(5): 48–52. doi: 10.3969/j.issn.1003-0999.2017.05.008

    YU Y Q, LI C, TIE Y. SPH-based numercial simulation of composite material under bird impact [J]. Fiber Reinforced Plastics/Composites, 2017(5): 48–52. doi: 10.3969/j.issn.1003-0999.2017.05.008
    [24] 杨扬, 曾毅, 汪冰峰. 基于Johnson-Cook模型的TC16钛合金动态本构关系 [J]. 中国有色金属学报, 2008, 18(3): 505–510. doi: 10.3321/j.issn:1004-0609.2008.03.021

    YANG Y, ZENG Y, WANG B F. Dynamic constitutive relationship of TC16 titanium alloy based on Johnson-Cook model [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(3): 505–510. doi: 10.3321/j.issn:1004-0609.2008.03.021
    [25] KAY G. Failure modeling of titanium-6Al-4V and 2024-T3 aluminum with the Johnson-Cook material model [R]. Lawrence Livermore National Laboratory, 2002.
    [26] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. doi: 10.13465/j.cnki.jvs.2016.22.024

    HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. doi: 10.13465/j.cnki.jvs.2016.22.024
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  119
  • PDF下载量:  32
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-04-08
  • 录用日期:  2022-04-20
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回