HMX晶体热致相变对损伤的影响

杨昆 吴艳青 黄风雷

杨昆, 吴艳青, 黄风雷. HMX晶体热致相变对损伤的影响[J]. 高压物理学报, 2022, 36(3): 030105. doi: 10.11858/gywlxb.20220545
引用本文: 杨昆, 吴艳青, 黄风雷. HMX晶体热致相变对损伤的影响[J]. 高压物理学报, 2022, 36(3): 030105. doi: 10.11858/gywlxb.20220545
YANG Kun, WU Yanqing, HUANG Fenglei. Effects of Heating-Induced Phase Transition on Damage for HMX Crystal[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030105. doi: 10.11858/gywlxb.20220545
Citation: YANG Kun, WU Yanqing, HUANG Fenglei. Effects of Heating-Induced Phase Transition on Damage for HMX Crystal[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030105. doi: 10.11858/gywlxb.20220545

HMX晶体热致相变对损伤的影响

doi: 10.11858/gywlxb.20220545
基金项目: 国家自然科学基金(11872119);中国博士后科学基金(2020M680394,BX20200046);国防基础科研核科学挑战专题(TZ2016001)
详细信息
    作者简介:

    杨 昆(1993-),男,博士,博士后,主要从事高能炸药宏细观力-热-化耦合响应研究.E-mail:ykbit123@163.com

    通讯作者:

    吴艳青(1974-),女,博士,教授,主要从事含能材料细观力学与安全性研究.E-mail:wuyqing@bit.edu.cn

  • 中图分类号: O521.2; O341

Effects of Heating-Induced Phase Transition on Damage for HMX Crystal

  • 摘要: HMX基PBX炸药混合体系中炸药晶体在发生高温熔化和分解反应之前,会率先发生非均匀热膨胀和固相晶型转变,使材料的力学性能和安全性能发生突变。为探究HMX晶体的热致相变对材料内部损伤演化的影响机制,发展了考虑HMX晶体热膨胀和相变等变形机制的热力耦合晶体本构模型,从力学角度揭示了黏结剂包覆HMX晶体相变对体积变形、应力状态以及裂纹成核演化过程的影响机理,量化分析了升温速率对材料相变和裂纹损伤状态的影响规律。结果表明:随着加载温度升高,HMX晶体的热膨胀和$\,\beta $$\delta $相变导致体积增大,晶体内部形成拉伸应力状态,同时晶体与黏结剂相互挤压形成的局部压剪作用使晶体内部出现裂纹成核和扩展现象。相变温度附近HMX晶体内部裂纹成核和扩展数量显著增加,晶体内部发生不可逆损伤。外界升温速率对晶体内部裂纹形核扩展与损伤造成显著影响,较高的升温速率会加大晶体损伤程度,增加炸药内潜在热点源及意外点火风险。

     

  • 图  变形梯度的乘法分解

    Figure  1.  Multiple decomposition of deformation gradient

    图  黏结剂包覆HMX单晶的有限元模型

    Figure  2.  Finite element model for binder-bonded HMX single crystal

    图  $\,\beta $-HMX和 $\delta $-HMX的体积分数-加载温度曲线

    Figure  3.  Volume fraction of $\,\beta $-HMX and $\delta $-HMX versus loading temperature

    图  热膨胀和热致相变对体积应变的影响

    Figure  4.  Effects of thermal expansion and phase transition on the volumetric strain

    图  黏结剂、HMX晶体、界面和晶内的最大应力演化曲线

    Figure  5.  Maximum Mises stress evolution of binder matrix, HMX crystal, interface and intragranular HMX

    图  90 min加热至480 K时黏结剂、HMX晶体和界面的应力云图

    Figure  6.  Stress contours of binder matrix, HMX crystal and interface at 90 min and 480 K

    图  不同时刻裂纹损伤程度演化云图

    Figure  7.  Crack growth related damage evolution contours at different loading times

    图  HMX晶体的统计裂纹损伤演化

    Figure  8.  Statistical crack related damage evolution in HMX crystal

    图  不同升温速率下HMX晶体的相变速率

    Figure  9.  Rate of phase transition of HMX crystal at different heating rates

    图  10  不同升温速率下HMX晶体内的裂纹损伤

    Figure  10.  Crack related damage in HMX crystal at different heating rates

    表  1  $\,\beta $-HMX的弹性常数及其温度系数

    Table  1.   Elastic constants and temperature coefficients of $\,\beta $-HMX

    C11/GPaC12/GPaC13/GPaC15/GPaC22/GPaC23/GPaC25/GPa
    22.29.613.2−0.123.913.04.7
    C33/GPaC44/GPaC55/GPaC66/GPaC35/GPaC46/GPa$\dfrac{ {{\rm d}{C{_{11} } } } }{ {{\rm d}T} }$/(GPa·K−1)
    23.49.211.110.11.62.5−0.030
    $\dfrac{ {{\rm d}{C{_{12}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{13}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{{_{15}} } } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{22}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{23}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{25}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{33}} } } }{ {{\rm d}T} }$/(GPa·K−1)
    −0.001−0.0120.002−0.023−0.0180.005−0.003
    $\dfrac{ {{\rm d}{C{_{44}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{55}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{66}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{35}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{46}} } } }{ {{\rm d}T} }$/(GPa·K−1)
    −0.009−0.004−0.0070.0030.004
    下载: 导出CSV

    表  2  $\delta $-HMX的弹性常数及其温度系数

    Table  2.   Elastic constants and temperature coefficients of $\delta $-HMX

    C11/GPaC12/GPaC13/GPaC22/GPaC23/GPaC33/GPa
    14.510.610.314.010.318.0
    C44/GPaC55/GPaC66/GPa$\dfrac{ {{\rm d}{C{_{11} }} } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{12}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{13}} } } }{ {{\rm d}T} }$/(GPa·K−1)
    4.44.42.3−0.014−0.007−0.009
    $\dfrac{ {{\rm d}{C{_{22} }} } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{23}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{33} }} } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{44}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{55}} } } }{ {{\rm d}T} }$/(GPa·K−1)$\dfrac{ {{\rm d}{C{_{66}} } } }{ {{\rm d}T} }$/(GPa·K−1)
    −0.014−0.009−0.019−0.006−0.006−0.007
    下载: 导出CSV

    表  3  HMX单晶模型的物理参数

    Table  3.   Physical parameters for HMX single crystal model

    Phase$\,\rho $/(kg∙m−3)cV/(J∙kg−1∙K−1)α11/K−1α22/K−1α33/K−1α13/K−1
    $\,\beta $1900667−2.90×10−61.16×10−41.79×10−5−1.26×10−5
    $\delta $1760667 6.18×10−56.18×10−52.47×10−5
    下载: 导出CSV

    表  4  HMX的$\,\beta $$\delta $相变模型参数

    Table  4.   Parameters related to $\,\beta $$\delta $ phase transition model of HMX

    iQ/(m3∙mol−1)S*/(J∙mol−1∙K−1)H*/(kJ∙mol−1)V*/(10−5 m3∙mol−1)
    11.00144.44207.6911.14
    −11.00121.68197.8910
    23.0×10−10149.85 79.7002.33
    −23.0×10−10127.09 69.9001.19
    下载: 导出CSV

    表  5  界面与HMX晶体内双线性内聚力模型参数

    Table  5.   Bilinear cohesive model parameters for interface and HMX granular

    PositionK11/(MPa∙m−1)K22/(MPa∙m−1)K33/(MPa∙m−1)T11/MPaT22/MPaT33/MPaG/(J∙m−2)
    Interface1.5561.5561.5561.661.661.6680.0
    Intra-HMX1061061062.03.03.0100.0
    下载: 导出CSV
  • [1] ASAY B W. Non-shock initiation of explosives [M]. New York: Springer, 2010.
    [2] DAI X G, WEN Y S, WEN M P, et al. Projectile impact ignition and reaction violent mechanism for HMX-based polymer bonded explosives at high temperature [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 799–808. doi: 10.1002/prep.201600130
    [3] 文玉史, 文雯, 代晓淦, 等. 相变与微裂纹对HMX晶体高温下撞击感度的影响机制 [J]. 含能材料, 2019, 27(3): 184–189. doi: 10.11943/CJEM2018116

    WEN Y S, WEN W, DAI X G, et al. Influence mechanism of phase transition and micro cracks on impact sensitivity of HMX crystal at high temperature [J]. Chinese Journal of Energetic Materials, 2019, 27(3): 184–189. doi: 10.11943/CJEM2018116
    [4] 郜婵, 孙晓宇, 梁文韬, 等. RDX, HMX及CL-20晶体的高温高压相变研究进展 [J]. 含能材料, 2020, 28(9): 902–914. doi: 10.11943/CJEM2020088

    GAO C, SUN X Y, LIANG W T, et al. Review on phase transition of RDX, HMX and CL-20 crystals under high temperature and high pressure [J]. Chinese Journal of Energetic Materials, 2020, 28(9): 902–914. doi: 10.11943/CJEM2020088
    [5] HENSON B F, ASAY B W, SANDER R K, et al. Dynamic measurement of the HMX β-δ phase transition by second harmonic generation [J]. Physical Review Letters, 1999, 82(6): 1213–1216. doi: 10.1103/PhysRevLett.82.1213
    [6] HU W J, WU Y Q, HUANG F L, et al. Numerical simulation analyses of βδ phase transition for a finite-sized HMX single crystal subjected to thermal loading [J]. RSC Advances, 2018, 8(44): 24873–24882. doi: 10.1039/C8RA02649A
    [7] WANG X J, WU Y Q, HU W J, et al. Anisotropic mechanical-thermal-phase transformation response of cyclotetramethylene tetranitramine (HMX) single crystal under ramp loading [J]. International Journal of Solids and Structures, 2020, 200: 170–187. doi: 10.1016/j.ijsolstr.2020.05.024
    [8] 胡惟佳. 高温下炸药晶体尺度相变效应及损伤点火响应研究 [D]. 北京: 北京理工大学, 2020.

    HU W J. Phase transition and damage ignition response of explosives under high temperature at the crystal scale [D]. Beijing: Beijing Institute of Technology, 2020.
    [9] XUE C, SUN J, KANG B, et al. The β-δ phase transition and thermal expansion of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4): 333–338. doi: 10.1002/prep.200900036
    [10] WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition [J]. Journal of Applied Physics, 2015, 118(5): 055901. doi: 10.1063/1.4927614
    [11] 代晓淦. 高温下HMX基PBX炸药撞击响应规律及影响机制研究 [D]. 北京: 北京理工大学, 2018.

    DAI X G. Impact responses and influence mechanisms of HMX-based polymer-bonded explosives subjected to elevated temperature [D]. Beijing: Beijing Institute of Technology, 2018.
    [12] HENSON B F, SMILOWITZ L, ASAY B W, et al. The βδ phase transition in the energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: thermodynamics [J]. The Journal of Chemical Physics, 2002, 117(8): 3780–3788. doi: 10.1063/1.1495398
    [13] 范正杰, 刘占芳. 升温和降温引起TATB基PBX炸药脱黏的数值分析 [J]. 应用数学和力学, 2020, 41(9): 956–973. doi: 10.21656/1000-0887.410062

    FAN Z J, LIU Z F. Numerical analysis on debonding of crystal-binder interface in TATB-based polymer-bonded explosive caused by heating and cooling processes [J]. Applied Mathematics and Mechanics, 2020, 41(9): 956–973. doi: 10.21656/1000-0887.410062
    [14] TAN H, LIU C, HUANG Y, et al. The cohesive law for the particle/matrix interfaces in high explosives [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1892–1917. doi: 10.1016/j.jmps.2005.01.009.
    [15] XIA Q Z, WU Y Q, HUANG F L. Effect of interface behaviour on damage and instability of PBX under combined tension–shear loading [J]. Defence Technology, 2022.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1452
  • HTML全文浏览量:  457
  • PDF下载量:  58
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-04-15
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回