基于TPU材料层级结构的优化设计及吸能特性

李腾 张晨帆 邓庆田 李新波 温金鹏

李腾, 张晨帆, 邓庆田, 李新波, 温金鹏. 基于TPU材料层级结构的优化设计及吸能特性[J]. 高压物理学报, 2022, 36(6): 064104. doi: 10.11858/gywlxb.20220542
引用本文: 李腾, 张晨帆, 邓庆田, 李新波, 温金鹏. 基于TPU材料层级结构的优化设计及吸能特性[J]. 高压物理学报, 2022, 36(6): 064104. doi: 10.11858/gywlxb.20220542
LI Teng, ZHANG Chenfan, DENG Qingtian, LI Xinbo, WEN Jinpeng. Optimized Design and Energy Absorption of TPU Material Based on Hierarchical Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064104. doi: 10.11858/gywlxb.20220542
Citation: LI Teng, ZHANG Chenfan, DENG Qingtian, LI Xinbo, WEN Jinpeng. Optimized Design and Energy Absorption of TPU Material Based on Hierarchical Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064104. doi: 10.11858/gywlxb.20220542

基于TPU材料层级结构的优化设计及吸能特性

doi: 10.11858/gywlxb.20220542
基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(U1930204)
详细信息
    作者简介:

    李 腾(1998-),男,硕士研究生,主要从事多孔材料与结构力学性能研究.E-mail:2020112046@chd.edu.cn

    通讯作者:

    邓庆田(1980-),男,博士,副教授,主要从事多孔材料与结构力学性能研究.E-mail:dengqt@chd.edu.cn

  • 中图分类号: O347

Optimized Design and Energy Absorption of TPU Material Based on Hierarchical Structure

  • 摘要: 选择柔性热塑性聚氨酯(TPU)为原料制备实验试样。基于面心立方层级结构,改变结构的直梁样式、间距,并将蜂窝结构层引入结构中,通过实验和有限元分析,研究层级结构在准静态加载下的变形模式和吸能特性。实验结果与有限元分析得到的载荷-位移曲线吻合较好。结果表明:与初始面心立方层级结构相比,增大直梁的振幅,调整直梁间距为2 mm,即增加塑性铰个数时,又或将蜂窝结构层引入层级结构,可以大幅提高层级结构的能量吸收性能;减小间距、增多塑性铰数目对改善层级结构吸能能力的效果最优;D-1构型与M-1构型相比,比吸能提高了46%;调整塑性铰位置时,层级结构会发生屈曲,不利于层级结构的能量吸收;与M-1构型相比,D-2和D-3构型的比吸能分别降低了27%和34%。

     

  • 图  面心立方层级结构(a)和不同振幅下的正弦曲线梁(b)

    Figure  1.  Face-centered cubic hierarchical structure (a) and sinusoidal beams of different amplitudes (b)

    图  调整直梁间距

    Figure  2.  Adjust the distance between straight beams

    图  蜂窝结构层:(a)正三角形,(b)内凹形

    Figure  3.  Honeycomb structure layer: (a) regular triangle,(b) re-entrant

    图  有限元模型

    Figure  4.  Finite element model

    图  不同网格尺寸下M-1构型的载荷-位移曲线(a)和能量时程曲线(b)

    Figure  5.  Force-displacement curves of M-1 with different mesh sizes (a) and time history of energy (b)

    图  实验试样 (a) 和CMT5305万能试验机 (b)

    Figure  6.  Experimental samples (a) and CMT5305 universal testing machine (b)

    图  (a) 拉伸试样及尺寸和 (b) TPU材料的应力-应变曲线

    Figure  7.  (a) Tensile specimens and its dimensions,(b) stress-strain curve of TPU

    图  调整幅值(a)、间距(b)、角度(c)以及插入蜂窝结构层(d)时层级结构试样的载荷-位移曲线

    Figure  8.  Force-displacement curves of hierarchical structure sample: adjustment of (a) amplitude, (b) distance, (c) angle and (d) introducing honeycomb structural layers

    图  M-1试样不同阶段变形模式的实验与有限元模拟结果对比

    Figure  9.  Experimental and finite element simulation comparison of deformation modes of M-1 specimens at different stages

    图  10  M-1试样的实验与有限元模拟载荷-位移曲线对比

    Figure  10.  Comparison of experimental and finite element simulation of force-displacement curves for M-1 specimens

    图  11  不同振幅层级结构在不同应变下的变形

    Figure  11.  Deformation of hierarchical structures of different amplitude under various strains

    图  12  不同振幅层级结构的EASEA

    Figure  12.  EA and SEA of hierarchical structure ofdifferent amplitudes

    图  13  不同间距层级结构在不同应变下的变形

    Figure  13.  Deformation of hierarchical structures of different distance under various strains

    图  14  不同间距层级结构的EASEA

    Figure  14.  EA and SEA of hierarchical structure ofdifferent distance

    图  15  不同角度层级结构在不同应变下的变形

    Figure  15.  Deformation of hierarchical structures of different angle under various strains

    图  16  不同角度层级结构的EASEA

    Figure  16.  EA and SEA of hierarchical structure ofdifferent straight beam angles

    图  17  不同应变下蜂窝层级结构的变形情况

    Figure  17.  Deformation of honeycomb hierarchical structures under various strains

    图  18  蜂窝层级结构的EASEA

    Figure  18.  EA and SEA of hierarchical structure with honeycomb structure layer

    表  1  4种设计方法获得的几何模型的具体结构特征

    Table  1.   Specific structural features of geometric models obtained by four design methods

    ModelSpecific structural features
    Distance/mmAmplitude/mmAngle/(º)
    M-1300, 90
    AM-130.250, 90
    AM-230.500, 90
    AM-331.000, 90
    D-1200, 90
    D-22-4-200, 90
    D-34-2-400, 90
    AN-100, 45
    AN-200, 45, 135
    AN-300, 90, 45, 135
    AN-400, 30, 60, 90
    H-1Honeycomb structure layer: equilateral triangle
    H-2Honeycomb structure layer: re-entrant
    下载: 导出CSV

    表  2  打印试样的质量

    Table  2.   Mass of the 3D printed sample

    ModelMass/g ModelMass/g
    M-16.92 AN-19.01
    AM-17.63AN-28.72
    AM-27.74AN-38.38
    AM-39.39AN-47.73
    D-19.26H-110.05
    D-26.66H-29.15
    D-36.71
    下载: 导出CSV
  • [1] 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展 [J]. 力学进展, 2012, 42(1): 41–67. doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095

    WU L Z, XIONG J, MA L, et al. Processes in the study on novel composite sandwich panels with lattice truss cores [J]. Advances in Mechanics, 2012, 42(1): 41–67. doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095
    [2] MENG Z J, HE J K, CAI Z H, et al. Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering [J]. Materials & Design, 2020, 189: 108508. doi: 10.1016/j.matdes.2020.108508
    [3] WEEGER O, BODDETI N, YEUNG S K, et al. Digital design and nonlinear simulation for additive manufacturing of soft lattice structures [J]. Additive Manufacturing, 2019, 25: 39–49. doi: 10.1016/j.addma.2018.11.003
    [4] VASILIEV V V, RAZIN A F. Anisogrid composite lattice structures for spacecraft and aircraft applications [J]. Composite Structures, 2006, 76(1/2): 182–189. doi: 10.1016/j.compstruct.2006.06.025
    [5] LAI C Q, DARAIO C. Highly porous microlattices as ultrathin and efficient impact absorbers [J]. International Journal of Impact Engineering, 2018, 120: 138–149. doi: 10.1016/j.ijimpeng.2018.05.014
    [6] XUE R, CUI X G, ZHANG P, et al. Mechanical design and energy absorption performances of novel dual scale hybrid plate-lattice mechanical metamaterials [J]. Extreme Mechanics Letters, 2020, 40: 100918. doi: 10.1016/j.eml.2020.100918
    [7] ZHANG H, GUO X G, WU J, et al. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves [J]. Science Advances, 2018, 4(6): eaar8535. doi: 10.1126/sciadv.aar8535
    [8] SEEPERSAD C C, ALLEN J K, MCDOWELL D L, et al. Robust design of cellular materials with topological and dimensional imperfections [J]. Journal of Mechanical Design, 2006, 128(6): 1285–1297. doi: 10.1115/1.2338575
    [9] BONATTI C, MOHR D. Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures [J]. International Journal of Plasticity, 2017, 92: 122–147. doi: 10.1016/j.ijplas.2017.02.003
    [10] WANG C, GU X J, ZHU J H, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing [J]. Structural and Multidisciplinary Optimization, 2020, 61(3): 869–894. doi: 10.1007/s00158-019-02408-2
    [11] YIN S, LI J N, CHEN H Y, et al. Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing [J]. International Journal of Mechanical Sciences, 2018, 149: 150–163. doi: 10.1016/j.ijmecsci.2018.09.038
    [12] CHEN X Y, JI Q X, WEI J Z, et al. Light-weight shell-lattice metamaterials for mechanical shock absorption [J]. International Journal of Mechanical Sciences, 2020, 169: 105288. doi: 10.1016/j.ijmecsci.2019.105288
    [13] MANSOUR M T, TSONGAS K, TZETZIS D, et al. The in-plane compression performance of hierarchical honeycomb additive manufactured structures [J]. IOP Conference Series: Materials Science and Engineering, 2019, 564: 012015. doi: 10.1088/1757-899X/564/1/012015
    [14] SIACOR F D C, CHEN Q Y, ZHAO J Y, et al. On the additive manufacturing (3D printing) of viscoelastic materials and flow behavior: from composites to food manufacturing [J]. Additive Manufacturing, 2021, 45: 102043. doi: 10.1016/j.addma.2021.102043
    [15] 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展 [J]. 力学进展, 2021, 51(3): 648–701. doi: 10.6052/1000-0992-21-037

    LIAN Y P, WANG P D, GAO J, et al. Fundamental mechanics problems in metal additive manufacturing: a state-of-art review [J]. Advances in Mechanics, 2021, 51(3): 648–701. doi: 10.6052/1000-0992-21-037
    [16] WANG S L, ZHANG M, WANG Y, et al. Experimental studies on quasi-static axial crushing of additively-manufactured PLA random honeycomb-filled double circular tubes [J]. Composite Structures, 2021, 261: 113553. doi: 10.1016/j.compstruct.2021.113553
    [17] 李腾, 邓庆田, 李新波, 等. 多孔柱准静态压缩力学行为和吸能特性分析 [J]. 塑性工程学报, 2022, 29(2): 204–211. doi: 10.3969/j.issn.1007-2012.2022.02.029

    LI T, DENG Q T, LI X B, et al. Analysis of quasi-static compression mechanical behavior and energy absorption characteristics of porous columns [J]. Journal of Plasticity Engineering, 2022, 29(2): 204–211. doi: 10.3969/j.issn.1007-2012.2022.02.029
    [18] TAN C L, ZOU J, LI S, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures [J]. International Journal of Machine Tools and Manufacture, 2021, 167: 103764. doi: 10.1016/j.ijmachtools.2021.103764
    [19] YAN D J, CHANG J H, ZHANG H, et al. Soft three-dimensional network materials with rational bio-mimetic designs [J]. Nature Communications, 2020, 11(1): 1180. doi: 10.1038/s41467-020-14996-5
    [20] KUMAR A, VERMA S, JENG J Y. Supportless lattice structures for energy absorption fabricated by fused deposition modeling [J]. 3D Printing and Additive Manufacturing, 2020, 7(2): 85–96. doi: 10.1089/3dp.2019.0089
    [21] LIU Y B, DONG Z C, GE J R, et al. Out-of-plane impact resistance enhancement in plane lattice with curved links [J]. Journal of Applied Mechanics, 2019, 86(9): 091004. doi: 10.1115/1.4043830
    [22] FENG G Z, LI S, XIAO L J, et al. Energy absorption performance of honeycombs with curved cell walls under quasi-static compression [J]. International Journal of Mechanical Sciences, 2021, 210: 106746. doi: 10.1016/j.ijmecsci.2021.106746
    [23] QI J Q, LI C, TIE Y, et al. Energy absorption characteristics of origami-inspired honeycomb sandwich structures under low-velocity impact loading [J]. Materials & Design, 2021, 207: 109837. doi: 10.1016/j.matdes.2021.109837
    [24] WANG P, YANG F, RU D S, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application [J]. Materials & Design, 2021, 210: 110116. doi: 10.1016/j.matdes.2021.110116
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  184
  • PDF下载量:  43
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-04-07
  • 录用日期:  2022-04-20
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回