Cook-off Test and Numerical Simulation of HMX-Based Cast Explosive Containing AP
-
摘要: 为研究新型奥克托今(HMX)基浇注炸药GOLA-1(HMX-Al-高氯酸铵(AP)-黏结剂(Kel-F))在热刺激下的响应特性,对GOLA-1炸药进行了温升速率为1.0和1.5 K/min的烤燃实验,获得了炸药中心点温升和点火时间等信息。在此基础上,结合烤燃数值模拟,预测了炸药的点火位置及温度。数值模拟与实验结果吻合较好,在1.0和1.5 K/min温升速率下GOLA-1炸药点火时间的相对偏差分别为1.3%和1.7%,表明所建立的数值模型较为合理。采用该模型进行了不同温升速率下的数值模拟,结果表明:当温升速率下降至0.4 K/min时,点火位置由装药底面边缘的环形区域移动至装药中心轴线上靠近下部的位置;点火位置随温升速率的下降而逐渐向药柱上部移动,温升速率对点火温度基本没有影响。Abstract: In order to study the response characteristics of a new HMX-based cast explosive GOLA-1 (HMX-aluminum-ammonium perchlorate (AP)-binder (Kel-F)) under thermal stimulation, the cook-off tests with heating rates of 1.0 and 1.5 K/min were conducted, and the information such as the temperature rise of the explosive center point and the ignition time was obtained. On that basis, and combined with numerical simulation of cook-off, the ignition position and temperature of explosives were predicted. The numerical simulation is in good agreement with the experimental results. The ignition time deviations of GOLA-1 explosive at heating rates of 1.0 and 1.5 K/min are 1.3% and 1.7%, respectively, indicating that the established simulation model is reasonable. On above basis, numerical simulations at different heating rates were carried out. The results show that when the heating rate decreased to 0.4 K/min, the ignition position moved from the annular area at the bottom edge of the charge to the lower part of the central axis of the charge column. As the heating rate continued to decrease, the ignition position gradually moved to the upper part of the charge, while the heating rate had little effect on the ignition temperature.
-
Key words:
- HMX-based PBX /
- ammonium perchlorate /
- thermal safety /
- cook-off test
-
表 1 HMX的反应动力学参数
Table 1. Reaction kinetic parameters of HMX
Reaction No. Z/s−1 ΔSf/
(J∙mol−1∙K−1)Ef/(kJ∙mol−1) ΔSr/ (J∙mol−1∙K−1) Er/(kJ∙mol−1) Q/(J∙g−1) 1 123.0 204 89.0 189 −25 2 −41.7 102 −75.2 865 −25 3 3.16×1016 200 −120 4 1.50×1014 173 3200 表 2 Kel-F和AP的反应动力学参数
Table 2. Reaction kinetic parameters of Kel-F and AP
Component Reaction No. Z/s−1 E/(kJ∙mol−1) Q/(J∙g−1) Kel-F 5 9.93×1017 272.0 −5870 AP 6 6.85×1012 146.3 297 表 3 材料物性参数
Table 3. Parameters of material properties
Component Density/(kg∙m−3) C/(J·kg−1·K) λ/(W·m−1·K) HMX 1850 1004.26 0.5358 Kel-F 2020 1000.43 0.0527 AP 1950 1255 0.2760 Al 2719 871 1.39 Steel 8030 502.48 16.27 Air 1.225 1006.43 0.0242 表 4 温升速率与点火位置的关系
Table 4. Heating rate vs. ignition position
No. β/(K·min−1) x/m 1 0.40 0.0212 2 0.35 0.0220 3 0.30 0.0273 4 0.25 0.0287 5 0.20 0.0298 6 0.15 0.0334 7 0.10 0.0374 -
[1] 李玉斌, 黄辉, 潘丽萍, 等. 高氯酸铵的包覆降感与应用研究 [J]. 含能材料, 2014(6): 792–797. doi: 10.11943/j.issn.1006-9941.2014.06.015LI Y B, HUANG H, PAN L P, et al. Desensitizing technology of AP by coating and its application [J]. Chinese Journal of Energetic Materials, 2014(6): 792–797. doi: 10.11943/j.issn.1006-9941.2014.06.015 [2] 刘子如, 施震灏, 阴翠梅, 等. 热红联用研究AP与RDX和HMX混合体系的热分解 [J]. 火炸药学报, 2007, 30(5): 57–61. doi: 10.3969/j.issn.1007-7812.2007.05.015LIU Z R, SHI Z H, YIN C M, et al. Investigation on thermal decomposition of mixed systems of AP with RDX and HMX by DSC-TG-FTIR [J]. Chinese Journal of Explosives & Propellants, 2007, 30(5): 57–61. doi: 10.3969/j.issn.1007-7812.2007.05.015 [3] LI Y B, PAN L P, YANG Z J, et al. The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX [J]. Defence Technology, 2017, 13(6): 422–427. doi: 10.1016/j.dt.2017.05.022 [4] 陈中娥, 唐承志, 赵孝彬. 固体推进剂的慢速烤燃行为与热分解特性的关系研究 [J]. 含能材料, 2005, 13(6): 393–396. doi: 10.3969/j.issn.1006-9941.2005.06.013CHEN Z E, TANG C Z, ZHAO X B. Relationship between slow cook-off behaviour and thermal decomposition characteristics of solid propellant [J]. Chinese Journal of Energetic Materials, 2005, 13(6): 393–396. doi: 10.3969/j.issn.1006-9941.2005.06.013 [5] 李苗苗, 郑亭亭, 陈静静, 等. HMX含量对HTPE推进剂热安全性的影响 [J]. 固体火箭技术, 2020, 43(2): 229–236. doi: 10.7673/j.issn.1006-2793.2020.02.015LI M M, ZHENG T T, CHEN J J, et al. Influence of HMX content on thermal safety characteristics of HTPE propellant [J]. Journal of Solid Rocket Technology, 2020, 43(2): 229–236. doi: 10.7673/j.issn.1006-2793.2020.02.015 [6] KIM Y, PARK Y, YOH J J. Slow and rapid thermal decomposition characteristics of enhanced blast explosives for burning in fuel-rich, oxygen-rich conditions [J]. Thermochimica Acta, 2019, 678: 178300. doi: 10.1016/j.tca.2019.178300 [7] 王琼, 丁黎, 张冬梅, 等. 含AP的浇铸PBX炸药的热安全性 [J]. 含能材料, 2015, 23(7): 693–696. doi: 10.11943/j.issn.1006-9941.2015.07.016WANG Q, DING L, ZHANG D M, et al. Thermal safety of casted PBX containing AP [J]. Chinese Journal of Energetic Materials, 2015, 23(7): 693–696. doi: 10.11943/j.issn.1006-9941.2015.07.016 [8] 王沛, 陈朗, 冯长根. 不同升温速率下炸药烤燃模拟计算分析 [J]. 含能材料, 2009, 17(1): 46–49, 54. doi: 10.3969/j.issn.1006-9941.2009.01.012WANG P, CHEN L, FENG C G. Numerical simulation of cook-off for explosive at different heating rates [J]. Chinese Journal of Energetic Materials, 2009, 17(1): 46–49, 54. doi: 10.3969/j.issn.1006-9941.2009.01.012 [9] 代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. doi: 10.3969/j.issn.1006-9941.2010.03.010DAI X G, HUANG Y M, LYU Z J, et al. Reaction behavior for PBX-2 explosive at different heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. doi: 10.3969/j.issn.1006-9941.2010.03.010 [10] 刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟 [J]. 兵工学报, 2019, 40(5): 990–995. doi: 10.3969/j.issn.1000-1093.2019.05.011LIU J, YU Y G. Simulation of slow cook-off for modular charges at different heating rates [J]. Acta Armamentarii, 2019, 40(5): 990–995. doi: 10.3969/j.issn.1000-1093.2019.05.011 [11] 吴浩, 段卓平, 白孟璟, 等. DNAN基含铝炸药烤燃实验与数值模拟 [J]. 含能材料, 2021, 29(5): 414–521. doi: 10.11943/CJEM2020298WU H, DUAN Z P, BAI M J, et al. Small-scale cook-off experiments and simulations of DNAN-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 414–521. doi: 10.11943/CJEM2020298 [12] 冯长根. 热爆炸理论 [M]. 北京: 科学出版社, 1988. [13] 寇永锋, 陈朗, 马欣, 等. 黑索今基含铝炸药烤燃试验和数值模拟 [J]. 兵工学报, 2019, 40(5): 978–989. doi: 10.3969/j.issn.1000-1093.2019.05.010KOU Y F, CHEN L, MA X, et al. Cook-off experimental and numerical simulation of RDX-based aluminized explosives [J]. Acta Armamentarii, 2019, 40(5): 978–989. doi: 10.3969/j.issn.1000-1093.2019.05.010 [14] PERRY W L, GUNDERSON J A, BALKEY M M, et al. Impact-induced friction ignition of an explosive: infrared observations and modeling [J]. Journal of Applied Physics, 2010, 108(8): 084902. doi: 10.1063/1.3487932 [15] TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. doi: 10.1080/07370650701719170 [16] KIM K H, KIM C K, YOO J C, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants [J]. Journal of Propulsion and Power, 2011, 27(4): 822–827. doi: 10.2514/1.B34099 [17] 张端庆. 火药用原材料性能与制备 [M]. 北京: 北京理工大学出版社, 1995. [18] RAJIĆ M, SUĆESKA M. Study of thermal decomposition kinetics of low-temperature reaction of ammonium perchlorate by isothermal TG [J]. Journal of Thermal Analysis and Calorimetry, 2000, 63(2): 375–386. doi: 10.1023/A:1010136308310 [19] BOLDYREV V V. Thermal decomposition of ammonium perchlorate [J]. Thermochimica Acta, 2006, 443(1): 1–36. doi: 10.1016/j.tca.2005.11.038