HMX基含AP浇注炸药烤燃实验与数值模拟

刘润泽 王昕捷 刘瑞峰 段卓平 黄风雷

刘润泽, 王昕捷, 刘瑞峰, 段卓平, 黄风雷. HMX基含AP浇注炸药烤燃实验与数值模拟[J]. 高压物理学报, 2022, 36(5): 055202. doi: 10.11858/gywlxb.20220538
引用本文: 刘润泽, 王昕捷, 刘瑞峰, 段卓平, 黄风雷. HMX基含AP浇注炸药烤燃实验与数值模拟[J]. 高压物理学报, 2022, 36(5): 055202. doi: 10.11858/gywlxb.20220538
LIU Runze, WANG Xinjie, LIU Ruifeng, DUAN Zhuoping, HUANG Fenglei. Cook-off Test and Numerical Simulation of HMX-Based Cast Explosive Containing AP[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055202. doi: 10.11858/gywlxb.20220538
Citation: LIU Runze, WANG Xinjie, LIU Ruifeng, DUAN Zhuoping, HUANG Fenglei. Cook-off Test and Numerical Simulation of HMX-Based Cast Explosive Containing AP[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055202. doi: 10.11858/gywlxb.20220538

HMX基含AP浇注炸药烤燃实验与数值模拟

doi: 10.11858/gywlxb.20220538
基金项目: 国家自然科学基金(12172051)
详细信息
    作者简介:

    刘润泽(1997—),男,硕士研究生,主要从事含能材料的热安全性研究.E-mail:1517603458@qq.com

    通讯作者:

    王昕捷(1991—),男,副教授,博士生导师,主要从事爆炸毁伤技术研究.E-mail:wangxinjie@bit.edu.cn

  • 中图分类号: O359; V211

Cook-off Test and Numerical Simulation of HMX-Based Cast Explosive Containing AP

  • 摘要: 为研究新型奥克托今(HMX)基浇注炸药GOLA-1(HMX-Al-高氯酸铵(AP)-黏结剂(Kel-F))在热刺激下的响应特性,对GOLA-1炸药进行了温升速率为1.0和1.5 K/min的烤燃实验,获得了炸药中心点温升和点火时间等信息。在此基础上,结合烤燃数值模拟,预测了炸药的点火位置及温度。数值模拟与实验结果吻合较好,在1.0和1.5 K/min温升速率下GOLA-1炸药点火时间的相对偏差分别为1.3%和1.7%,表明所建立的数值模型较为合理。采用该模型进行了不同温升速率下的数值模拟,结果表明:当温升速率下降至0.4 K/min时,点火位置由装药底面边缘的环形区域移动至装药中心轴线上靠近下部的位置;点火位置随温升速率的下降而逐渐向药柱上部移动,温升速率对点火温度基本没有影响。

     

  • 图  小型烤燃弹实验装置示意图

    Figure  1.  Schematic diagram of small-scale cook-off bomb experiment device

    图  小型烤燃弹的计算网格模型

    Figure  2.  Computational grid model of small-scale cook-off bomb

    图  点火后烤燃弹实物

    Figure  3.  Cook-off bombs after ignition

    图  GOLA-1炸药中心点的温度-时间曲线(1.0 K/min)

    Figure  4.  Temperature-time curves at the center point of GOLA-1 explosive (1.0 K/min)

    图  GOLA-1炸药中心点的温度-时间曲线(1.5 K/min)

    Figure  5.  Temperature-time curves at the center point of GOLA-1 explosive (1.5 K/min)

    图  1.0 K/min温升速率下不同时刻GOLA-1炸药的温度分布

    Figure  6.  Temperature distribution of GOLA-1 explosive at different time with the heating rate of 1.0 K/min

    图  1.5 K/min温升速率下不同时刻GOLA-1炸药的温度分布

    Figure  7.  Temperature distribution of GOLA-1 explosive at different time with the heating rate of 1.5 K/min

    图  1.0 K/min温升速率下点火点处的温度-时间曲线

    Figure  8.  Temperature-time curve of the ignition position with the heating rate of 1.0 K/min

    图  1.0 K/min温升速率下中心测温点处HMX的质量分数变化曲线

    Figure  9.  Mass fraction curves of HMX at the center point with the heating rate of 1.0 K/min

    图  10  1.0 K/min温升速率下点火点处HMX的质量分数变化曲线

    Figure  10.  Mass fraction curves of HMX at the ignition position with the heating rate of 1.0 K/min

    图  11  1.5 K/min温升速率下点火点处的温度-时间曲线

    Figure  11.  Temperature-time curve of the ignition position with the heating rate of 1.5 K/min

    图  12  1.5 K/min温升速率下中心测温点处HMX的质量分数变化曲线

    Figure  12.  Mass fraction curves of HMX at center point with the heating rate of 1.5 K/min

    图  13  1.5 K/min温升速率下点火点处HMX的质量分数变化曲线

    Figure  13.  Mass fraction curves of HMX at ignition position with the heating rate of 1.5 K/min

    图  14  1.5 K/min温升速率下中心测温点的AP转化率曲线

    Figure  14.  Conversion rate curve of AP at the center point with the heating rate of 1.5 K/min

    图  15  1.5 K/min温升速率下点火点的AP转化率曲线

    Figure  15.  Conversion rate curve of AP at ignition position with the heating rate of 1.5 K/min

    图  16  不同温升速率下点火位置的对比

    Figure  16.  Comparison of ignition positions with different heating rates

    图  17  温升速率对点火位置的影响

    Figure  17.  Effect of heating rate on ignition position

    表  1  HMX的反应动力学参数

    Table  1.   Reaction kinetic parameters of HMX

    Reaction No.Z/s−1ΔSf/
    (J∙mol−1∙K−1)
    Ef/(kJ∙mol−1)ΔSr/ (J∙mol−1∙K−1)Er/(kJ∙mol−1)Q/(J∙g−1)
    1 123.0204 89.0189−25
    2 −41.7102−75.2865−25
    33.16×1016 200 −120
    41.50×1014 173 3200
    下载: 导出CSV

    表  2  Kel-F和AP的反应动力学参数

    Table  2.   Reaction kinetic parameters of Kel-F and AP

    ComponentReaction No.Z/s−1E/(kJ∙mol−1)Q/(J∙g−1)
    Kel-F59.93×1017272.0−5870
    AP66.85×1012146.3297
    下载: 导出CSV

    表  3  材料物性参数

    Table  3.   Parameters of material properties

    ComponentDensity/(kg∙m−3)C/(J·kg−1·K)λ/(W·m−1·K)
    HMX18501004.260.5358
    Kel-F20201000.430.0527
    AP195012550.2760
    Al27198711.39
    Steel8030502.4816.27
    Air1.2251006.430.0242
    下载: 导出CSV

    表  4  温升速率与点火位置的关系

    Table  4.   Heating rate vs. ignition position

    No.β/(K·min−1)x/m
    10.400.0212
    20.350.0220
    30.300.0273
    40.250.0287
    5 0.200.0298
    6 0.150.0334
    7 0.100.0374
    下载: 导出CSV
  • [1] 李玉斌, 黄辉, 潘丽萍, 等. 高氯酸铵的包覆降感与应用研究 [J]. 含能材料, 2014(6): 792–797. doi: 10.11943/j.issn.1006-9941.2014.06.015

    LI Y B, HUANG H, PAN L P, et al. Desensitizing technology of AP by coating and its application [J]. Chinese Journal of Energetic Materials, 2014(6): 792–797. doi: 10.11943/j.issn.1006-9941.2014.06.015
    [2] 刘子如, 施震灏, 阴翠梅, 等. 热红联用研究AP与RDX和HMX混合体系的热分解 [J]. 火炸药学报, 2007, 30(5): 57–61. doi: 10.3969/j.issn.1007-7812.2007.05.015

    LIU Z R, SHI Z H, YIN C M, et al. Investigation on thermal decomposition of mixed systems of AP with RDX and HMX by DSC-TG-FTIR [J]. Chinese Journal of Explosives & Propellants, 2007, 30(5): 57–61. doi: 10.3969/j.issn.1007-7812.2007.05.015
    [3] LI Y B, PAN L P, YANG Z J, et al. The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX [J]. Defence Technology, 2017, 13(6): 422–427. doi: 10.1016/j.dt.2017.05.022
    [4] 陈中娥, 唐承志, 赵孝彬. 固体推进剂的慢速烤燃行为与热分解特性的关系研究 [J]. 含能材料, 2005, 13(6): 393–396. doi: 10.3969/j.issn.1006-9941.2005.06.013

    CHEN Z E, TANG C Z, ZHAO X B. Relationship between slow cook-off behaviour and thermal decomposition characteristics of solid propellant [J]. Chinese Journal of Energetic Materials, 2005, 13(6): 393–396. doi: 10.3969/j.issn.1006-9941.2005.06.013
    [5] 李苗苗, 郑亭亭, 陈静静, 等. HMX含量对HTPE推进剂热安全性的影响 [J]. 固体火箭技术, 2020, 43(2): 229–236. doi: 10.7673/j.issn.1006-2793.2020.02.015

    LI M M, ZHENG T T, CHEN J J, et al. Influence of HMX content on thermal safety characteristics of HTPE propellant [J]. Journal of Solid Rocket Technology, 2020, 43(2): 229–236. doi: 10.7673/j.issn.1006-2793.2020.02.015
    [6] KIM Y, PARK Y, YOH J J. Slow and rapid thermal decomposition characteristics of enhanced blast explosives for burning in fuel-rich, oxygen-rich conditions [J]. Thermochimica Acta, 2019, 678: 178300. doi: 10.1016/j.tca.2019.178300
    [7] 王琼, 丁黎, 张冬梅, 等. 含AP的浇铸PBX炸药的热安全性 [J]. 含能材料, 2015, 23(7): 693–696. doi: 10.11943/j.issn.1006-9941.2015.07.016

    WANG Q, DING L, ZHANG D M, et al. Thermal safety of casted PBX containing AP [J]. Chinese Journal of Energetic Materials, 2015, 23(7): 693–696. doi: 10.11943/j.issn.1006-9941.2015.07.016
    [8] 王沛, 陈朗, 冯长根. 不同升温速率下炸药烤燃模拟计算分析 [J]. 含能材料, 2009, 17(1): 46–49, 54. doi: 10.3969/j.issn.1006-9941.2009.01.012

    WANG P, CHEN L, FENG C G. Numerical simulation of cook-off for explosive at different heating rates [J]. Chinese Journal of Energetic Materials, 2009, 17(1): 46–49, 54. doi: 10.3969/j.issn.1006-9941.2009.01.012
    [9] 代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. doi: 10.3969/j.issn.1006-9941.2010.03.010

    DAI X G, HUANG Y M, LYU Z J, et al. Reaction behavior for PBX-2 explosive at different heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. doi: 10.3969/j.issn.1006-9941.2010.03.010
    [10] 刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟 [J]. 兵工学报, 2019, 40(5): 990–995. doi: 10.3969/j.issn.1000-1093.2019.05.011

    LIU J, YU Y G. Simulation of slow cook-off for modular charges at different heating rates [J]. Acta Armamentarii, 2019, 40(5): 990–995. doi: 10.3969/j.issn.1000-1093.2019.05.011
    [11] 吴浩, 段卓平, 白孟璟, 等. DNAN基含铝炸药烤燃实验与数值模拟 [J]. 含能材料, 2021, 29(5): 414–521. doi: 10.11943/CJEM2020298

    WU H, DUAN Z P, BAI M J, et al. Small-scale cook-off experiments and simulations of DNAN-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 414–521. doi: 10.11943/CJEM2020298
    [12] 冯长根. 热爆炸理论 [M]. 北京: 科学出版社, 1988.
    [13] 寇永锋, 陈朗, 马欣, 等. 黑索今基含铝炸药烤燃试验和数值模拟 [J]. 兵工学报, 2019, 40(5): 978–989. doi: 10.3969/j.issn.1000-1093.2019.05.010

    KOU Y F, CHEN L, MA X, et al. Cook-off experimental and numerical simulation of RDX-based aluminized explosives [J]. Acta Armamentarii, 2019, 40(5): 978–989. doi: 10.3969/j.issn.1000-1093.2019.05.010
    [14] PERRY W L, GUNDERSON J A, BALKEY M M, et al. Impact-induced friction ignition of an explosive: infrared observations and modeling [J]. Journal of Applied Physics, 2010, 108(8): 084902. doi: 10.1063/1.3487932
    [15] TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. doi: 10.1080/07370650701719170
    [16] KIM K H, KIM C K, YOO J C, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants [J]. Journal of Propulsion and Power, 2011, 27(4): 822–827. doi: 10.2514/1.B34099
    [17] 张端庆. 火药用原材料性能与制备 [M]. 北京: 北京理工大学出版社, 1995.
    [18] RAJIĆ M, SUĆESKA M. Study of thermal decomposition kinetics of low-temperature reaction of ammonium perchlorate by isothermal TG [J]. Journal of Thermal Analysis and Calorimetry, 2000, 63(2): 375–386. doi: 10.1023/A:1010136308310
    [19] BOLDYREV V V. Thermal decomposition of ammonium perchlorate [J]. Thermochimica Acta, 2006, 443(1): 1–36. doi: 10.1016/j.tca.2005.11.038
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  199
  • PDF下载量:  54
出版历程
  • 收稿日期:  2022-03-18
  • 修回日期:  2022-04-08
  • 网络出版日期:  2022-09-17
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回