基于IAHP-Fuzzy的岩溶隧道突水风险预测

李录 秦本东 郭佳奇 黄鑫 田永超

李录, 秦本东, 郭佳奇, 黄鑫, 田永超. 基于IAHP-Fuzzy的岩溶隧道突水风险预测[J]. 高压物理学报, 2022, 36(5): 055302. doi: 10.11858/gywlxb.20220536
引用本文: 李录, 秦本东, 郭佳奇, 黄鑫, 田永超. 基于IAHP-Fuzzy的岩溶隧道突水风险预测[J]. 高压物理学报, 2022, 36(5): 055302. doi: 10.11858/gywlxb.20220536
LI Lu, QIN Bendong, GUO Jiaqi, HUANG Xin, TIAN Yongchao. Water Inrush Risk Prediction of Karst Tunnel Based on IAHP-Fuzzy Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055302. doi: 10.11858/gywlxb.20220536
Citation: LI Lu, QIN Bendong, GUO Jiaqi, HUANG Xin, TIAN Yongchao. Water Inrush Risk Prediction of Karst Tunnel Based on IAHP-Fuzzy Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055302. doi: 10.11858/gywlxb.20220536

基于IAHP-Fuzzy的岩溶隧道突水风险预测

doi: 10.11858/gywlxb.20220536
基金项目: 国家自然科学基金(52178388);中国博士后科学基金(2018M631114);河南省自然科学基金(212300410146);河南省科技攻关项目(212102310292)
详细信息
    作者简介:

    李 录(1998-),男,硕士研究生,主要从事岩土工程、隧道与地下工程研究.E-mail:1262776989@qq.com

    通讯作者:

    郭佳奇(1981-),男,博士,副教授,博士生导师,主要从事隧道与地下工程防灾减灾研究.E-mail:gjq519@163.com

  • 中图分类号: O382; U25

Water Inrush Risk Prediction of Karst Tunnel Based on IAHP-Fuzzy Method

  • 摘要: 突水突泥是岩溶隧道施工阶段的主要工程灾害之一,有必要对其潜在风险等级进行预测。以宜万铁路野三关隧道工程为背景,采用文献调研法,将影响隧道突水风险的因素归结为工程地质条件、水文地质条件和岩体质量条件,并建立了对应的评价指标体系,通过形成各层次因素的区间判断矩阵确定指标权重,运用IAHP-Fuzzy法实现了岩溶隧道突水风险分级。综合3个一级指标和11个二级指标形成了隧道突水突泥的层次分析模型和风险分级体系。通过区间层次分析法确定了指标权重,计算结果显示,水压力特征在各指标中占比最高,高水压是造成野三关隧道突水的最直接诱因。通过验算,水压力为0.1 MPa时隧道突水风险为弱风险,建议采取预注浆加固等主动防护措施降低水压力,该验算进一步证明了模型的可行性。

     

  • 图  模糊层次综合评价流程

    Figure  1.  Flow chart of fuzzy hierarchy comprehensive evaluation

    图  隧道突水突泥风险性层次分析模型

    Figure  2.  Risk hierarchy analysis model of tunnel water inrush and mud inrush

    图  各个评价指标的隶属度图像

    Figure  3.  Image of membership degree of each evaluation index

    表  1  突水突泥风险分级

    Table  1.   Risk classification of water inrush and mud inrush

    Level Ⅰ: no riskLevel Ⅱ: weak riskLevel Ⅲ: medium riskLevel Ⅳ: high risk
    The tunnel is
    in an ideal
    safe condition
    During the construction process, pay
    attention to control the excavation
    disturbance and support, so as not
    to cause water inrush accidents
    The gradual destruction of the
    water-resistant rock mass may
    induce the accident of water
    inrush and mud inrush
    Water-resistant rock mass is
    directly damaged, resulting
    in major water and
    mud inrush accidents
    下载: 导出CSV

    表  2  突水综合评价指标体系及界限分布

    Table  2.   Comprehensive evaluation index system and boundary distribution of water inrush

    Evaluation
    index
    Risk level
    S1Noncatastrophic (0)Weak catastrophic (0.25)Medium catastrophic (0.50)High catastrophic
    (0.75)
    S2<1 (0.143)3 (0.429)5.5 (0.786)>7 (1.000)
    S3Regardless of
    direction (0.25)
    The strike is parallel to
    the tunnel axis (0.50)
    Strike perpendicular to the
    axis of the tunnel, tunneling
    along the dip (0.75)
    Strike perpendicular to the
    axis of the tunnel, tunneling
    against the dip (1.00)
    S40 (0)0.1 MPa (0.167)0.3 MPa (0.500)>0.6 MPa (1.000)
    S5Nonnegative
    terrain (0)
    Small negative
    terrain (0.25)
    Medium negative
    terrain (0.50)
    Large negative
    terrain (0.75)
    S6Micro hydraulic
    conductivity (0)
    Weak hydraulic
    conductivity (0.25)
    Medium hydraulic
    conductivity (0.50)
    Strong hydraulic
    conductivity (0.75)
    S7>90% (0.90)75% (0.75)50% (0.50)<25% (0.25)
    S8<1 (0.25)2 (0.50)3 (0.75)>4 (1.00)
    S91 (0)1.1 (0.2)1.4 (0.4)>1.6 (0.6)
    S10>250 MPa (1.0)100 MPa (0.4)50 MPa (0.2)0 (0)
    S11<0.50 L/(min·m) (0.04)2.25 L/(min·m) (0.18)7.50 L/(min·m) (0.60)>12.50 L/(min·m) (1.00)
    下载: 导出CSV

    表  3  一级指标判断矩阵

    Table  3.   Judgment matrix of first-level index

    StandardRelative importance degree
    F1F2F3
    F1[1.00, 1.00][0.50, 0.75][0.75, 1.00]
    F2[1.33, 2.00][1.00, 1.00][1.00, 1.25]
    F3[1.00, 1.33][0.80, 1.00][1.00, 1.00]
    下载: 导出CSV

    表  4  一级指标权重

    Table  4.   Weight of first-level index

    Standardm(Ai)ri
    F10.26600.0162
    F20.40160.0225
    F30.33140.0104
    Consistency requirementk=0.9499<1, β=1.0482. Meet consistency requirements.
    下载: 导出CSV

    表  5  综合指标权重

    Table  5.   Weight of comprehensive index

    Primary indexWeight of primary indexSecondary indexWeight of secondary indexComprehensive weight
    F10.2660S10.85840.2283
    S20.07060.0188
    S30.07060.0188
    F20.4016S40.64150.2576
    S50.18220.0731
    S60.18220.0731
    F30.3314S70.32560.1080
    S80.32560.1080
    S90.20290.0672
    S100.09570.0317
    S110.05020.0166
    下载: 导出CSV

    表  6  各指标的实际值和归一化值

    Table  6.   Actual and normalized values of each evaluation index

    Evaluation
    index
    ValueNormalized
    value
    Evaluation
    index
    ValueNormalized
    value
    S1Strong–medium0.625 S770%0.70
    S271.00 S810.25
    S3Tunneling against the dip0.75 S91.40.40
    S40.3–0.90.75 S1090–1100.44
    S5Large–medium0.625S11Seepage–a drip or linear flow
    or gushing of water
    0.80
    S6Strong–medium0.625
    下载: 导出CSV

    表  7  隧址区突水风险验算

    Table  7.   Water inrush risk checking in tunnel address area

    Water pressure/MPaNormalized water pressureBRisk level
    0.300.5[0.1101, 0.1160, 0.5607, 0.2144]
    0.360.6[0.1101, 0.1160, 0.5092, 0.2659]
    0.420.7[0.1101, 0.1160, 0.4577, 0.3174]
    0.480.8[0.1101, 0.1160, 0.4062, 0.3689]
    0.540.9[0.1101, 0.1160, 0.3547, 0.4204]
    0.601.0[0.1101, 0.1160, 0.3031, 0.4720]
    下载: 导出CSV
  • [1] 李新平, 瞿江文, 唐结齐, 等. 基于组合赋权法-TOPSIS法的北天山隧道突水风险评价研究 [J]. 水利水电技术, 2019, 50(9): 114–119. doi: 10.13928/j.cnki.wrahe.2019.09.015

    LI X P, QU J W, TANG J Q, et al. Study on combination weighting method-TOPSIS method-based risk assessment of water inrush in construction of North Tianshan Mountain Tunnel [J]. Water Resources and Hydropower Engineering, 2019, 50(9): 114–119. doi: 10.13928/j.cnki.wrahe.2019.09.015
    [2] 洪开荣. 近2年我国隧道及地下工程发展与思考(2017−2018年) [J]. 隧道建设, 2019, 39(5): 710–723. doi: 10.3973/j.issn.2096-4498.2019.05.002

    HONG K R. Development and thinking of tunnels and underground engineering in China in recent 2 years (from 2017 to 2018) [J]. Tunnel Construction, 2019, 39(5): 710–723. doi: 10.3973/j.issn.2096-4498.2019.05.002
    [3] LIN C J, ZHANG M, ZHOU Z Q, et al. A new quantitative method for risk assessment of water inrush in karst tunnels based on variable weight function and improved cloud model [J]. Tunnelling and Underground Space Technology, 2020, 95: 103136. doi: 10.1016/j.tust.2019.103136
    [4] SHI S S, XIE X K, BU L, et al. Hazard-based evaluation model of water inrush disaster sources in karst tunnels and its engineering application [J]. Environmental Earth Sciences, 2018, 77(4): 141. doi: 10.1007/s12665-018-7318-5
    [5] LI S C, ZHOU Z Q, LI L P, et al. Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system [J]. Tunnelling and Underground Space Technology, 2013, 38: 50–58. doi: 10.1016/j.tust.2013.05.001
    [6] HU Y B, LI W P, WANG Q Q, et al. Evaluation of water inrush risk from coal seam floors with an AHP-EWM algorithm and GIS [J]. Environmental Earth Sciences, 2019, 78(10): 290. doi: 10.1007/s12665-019-8301-5
    [7] WU J S, XU S D, ZHOU R, et al. Scenario analysis of mine water inrush hazard using Bayesian networks [J]. Safety Science, 2016, 89: 231–239. doi: 10.1016/j.ssci.2016.06.013
    [8] 游波, 施式亮, 刘何清, 等. 基于信息熵和集对分析理论的公路隧道水害倾向性判定 [J]. 公路交通科技, 2019, 36(6): 73–78. doi: 10.3969/j.issn.1002-0268.2019.06.010

    YOU B, SHI S L, LIU H Q, et al. Determination of flood tendency of highway tunnel based on entropy and set pair analysis theory [J]. Journal of Highway and Transportation Research and Development, 2019, 36(6): 73–78. doi: 10.3969/j.issn.1002-0268.2019.06.010
    [9] ZHANG K, ZHENG W B, XU C, et al. An improved extension system for assessing risk of water inrush in tunnels in carbonate karst terrain [J]. KSCE Journal of Civil Engineering, 2019, 23(5): 2049–2064. doi: 10.1007/s12205-019-0756-0
    [10] MENG Z P, LI G Q, XIE X T. A geological assessment method of floor water inrush risk and its application [J]. Engineering Geology, 2012, 143-144: 51–60. doi: 10.1016/j.enggeo.2012.06.004
    [11] JIA X L, DAI Q M, YANG H Z. Susceptibility zoning of karst geological hazards using machine learning and cloud model [J]. Cluster Computing, 2019, 22(S4): 8051–8058. doi: 10.1007/s10586-017-1590-0
    [12] 李术才, 周宗青, 李利平, 等. 岩溶隧道突水风险评价理论与方法及工程应用 [J]. 岩石力学与工程学报, 2013, 32(9): 1858–1867. doi: 10.3969/j.issn.1000-6915.2013.09.018

    LI S C, ZHOU Z Q, LI L P, et al. Risk evaluation theory and method of water inrush in karst tunnels and its applications [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1858–1867. doi: 10.3969/j.issn.1000-6915.2013.09.018
    [13] 匡星, 白明洲, 王成亮, 等. 基于模糊评价方法的隧道岩溶突水地质灾害综合预警方法 [J]. 公路交通科技, 2010, 27(11): 100–103. doi: 10.3969/j.issn.1002-0268.2010.11.018

    KUANG X, BAI M Z, WANG C L, et al. Research of comprehensive warning of water inrush hazards in karst tunnel based on fuzzy evaluation method [J]. Journal of Highway and Transportation Research and Development, 2010, 27(11): 100–103. doi: 10.3969/j.issn.1002-0268.2010.11.018
    [14] WANG Y, YANG W F, LI M, et al. Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 50–55. doi: 10.1016/j.ijrmms.2012.03.006
    [15] 卢庆钊. 基于AHP-Fuzzy的隧道穿富水断层破碎带突水涌泥评估 [J]. 地下空间与工程学报, 2021, 17(Suppl 1): 439–448, 462.

    LU Q Z. Risk Assessment of water and mud inrush in tunnel crossing water-rich fault fracture zone based on AHP-Fuzzy [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(Suppl 1): 439–448, 462.
    [16] 王宇, 李建旺, 周喻. 隧道突水涌泥AHP-Fuzzy风险评价 [J]. 地下空间与工程学报, 2021, 17(4): 1257–1263.

    WANG Y, LI J W, ZHOU Y. Risk assessment of tunnel water inrush and burst mud by AHP-Fuzzy [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(4): 1257–1263.
    [17] 贺华刚. 深埋特长隧道的突涌水危险性评价研究 [J]. 中国岩溶, 2020, 39(3): 384–390.

    HE H G. Assessment of water inrush risk in deep buried long tunnels [J]. Carsologica Sinica, 2020, 39(3): 384–390.
    [18] 石州, 罗彦斌, 陈建勋, 等. 木寨岭公路隧道大变形综合评价预测 [J]. 公路交通科技, 2020, 37(8): 90–98, 158. doi: 10.3969/j.issn.1002-0268.2020.08.012

    SHI Z, LUO Y B, CHEN J X, et al. Comprehensive evaluation and prediction of large deformation of Muzhailing highway tunnel [J]. Journal of Highway and Transportation Research and Development, 2020, 37(8): 90–98, 158. doi: 10.3969/j.issn.1002-0268.2020.08.012
    [19] LIN S S, SHEN S L, ZHOU A N, et al. Novel model for risk identification during karst excavation [J]. Reliability Engineering & System Safety, 2021, 209: 107435. doi: 10.1016/J.RESS.2021.107435
    [20] 黄鑫, 林鹏, 许振浩, 等. 岩溶隧道突水突泥防突评判方法及其工程应用 [J]. 中南大学学报(自然科学版), 2018, 49(10): 2533–2544. doi: 10.11817/j.issn.1672?7207.2018.10.021

    HUANG X, LIN P, XU Z H, et al. Prevention structure assessment method against water and mud inrush in karst tunnels and its application [J]. Journal of Central South University (Science and Technology), 2018, 49(10): 2533–2544. doi: 10.11817/j.issn.1672?7207.2018.10.021
    [21] 李术才, 许振浩, 黄鑫, 等. 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析 [J]. 岩石力学与工程学报, 2018, 37(5): 1041–1069. doi: 10.13722/j.cnki.jrme.2017.1332

    LI S C, XU Z H, HUANG X, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1041–1069. doi: 10.13722/j.cnki.jrme.2017.1332
    [22] 李利平, 李术才, 陈军, 等. 基于岩溶突涌水风险评价的隧道施工许可机制及其应用研究 [J]. 岩石力学与工程学报, 2011, 30(7): 1345–1355.

    LI L P, LI S C, CHEN J, et al. Construction license mechanism and its application based on karst water inrush risk evaluation [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1345–1355.
    [23] WANG X T, LI S C, XU Z H, et al. An interval risk assessment method and management of water inflow and inrush in course of karst tunnel excavation [J]. Tunnelling and Underground Space Technology, 2019, 92: 103033. doi: 10.1016/j.tust.2019.103033
    [24] 许振浩, 李术才, 李利平, 等. 基于层次分析法的岩溶隧道突水突泥风险评估 [J]. 岩土力学, 2011, 32(6): 1757–1766. doi: 10.3969/j.issn.1000-7598.2011.06.027

    XU Z H, LI S C, LI L P, et al. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process [J]. Rock and Soil Mechanics, 2011, 32(6): 1757–1766. doi: 10.3969/j.issn.1000-7598.2011.06.027
    [25] 陈卫忠, 田云, 王学海, 等. 基于修正值的软岩隧道挤压变形预测 [J]. 岩土力学, 2019, 40(8): 3125–3134.

    CHEN W Z, TIAN Y, WANG X H, et al. Squeezing prediction of tunnel in soft rocks based on modified [J]. Rock and Soil Mechanics, 2019, 40(8): 3125–3134.
    [26] PRAMANIK R, BAIDYA D K, DHANG N. Implementation of fuzzy reliability analysis for elastic settlement of strip footing on sand considering spatial variability [J]. International Journal of Geomechanics, 2019, 19(12): 04019126. doi: 10.1061/(ASCE)GM.1943-5622.0001514
    [27] HE S Q, SONG D Z, MITRI H, et al. Integrated rockburst early warning model based on fuzzy comprehensive evaluation method [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104767. doi: 10.1016/j.ijrmms.2021.104767
    [28] 张梅, 张民庆, 孙国庆. 宜万铁路野三关隧道高压富水充填溶腔溃口处理技术 [J]. 铁道工程学报, 2010, 27(3): 81–86. doi: 10.3969/j.issn.1006-2106.2010.03.018

    ZHANG M, ZHANG M Q, SUN G Q. Technology for treating burst port of filling solution cavity with high-pressure and rich water of Yesanguan tunnel on Yichang-Wanzhou railway [J]. Journal of Railway Engineering Society, 2010, 27(3): 81–86. doi: 10.3969/j.issn.1006-2106.2010.03.018
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  138
  • PDF下载量:  34
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-04-05
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回