Numerical Simulation of Damage Characteristics of Multi-Layer Protective Structure under Hypervelocity Impact of Kinetic Energy Block
-
摘要: 基于有限元-光滑粒子流体动力学(FEM-SPH)自适应算法,采用有限元软件LS-DYNA对动能块超高速碰撞多层防护结构的毁伤特性进行了数值模拟,并结合量纲分析方法,分析了动能块的质量和撞击速度对多层防护结构穿孔特性的影响。结果表明:保持其他参数不变,在所研究的质量和撞击速度范围内,所有的动能块均可以穿透全部17层铝合金板,并在靶后形成碎片云,在撞击过程中动能块和铝合金板内部出现层裂现象;第1层铝合金板的穿孔直径随着动能块质量的增大近似呈幂函数增大,拟合误差在5%以内;第2层铝合金板的穿孔直径随着撞击速度的提升也呈幂函数增大,拟合误差在10%以内;碎片云的头部速度随着撞击速度的提升近似呈线性增大。研究结果可为后期分析靶后碎片云的质量与速度分布、建立冲击载荷模型奠定基础。Abstract: Based on finite element method-smoothed particle hydrodynamics (FEM-SPH) adaptive algorithm of finite element software LS-DYNA, the damage characteristics of a multi-layer protective structure caused by the hypervelocity impact of a kinetic energy block are numerically simulated. Combined with the dimensional analysis method, the effects of the mass and the impact velocity of the kinetic energy block on the perforation characteristics of the multi-layer protective structure are analyzed. The results show that when other parameters remain unchanged and within the range of mass and impact velocity studied in this paper, all kinetic energy blocks can penetrate 17 layers of aluminum alloy plates and form debris clouds behind the target. During the impact process, spallation occurs in the kinetic energy blocks and the aluminum alloy plates. The perforation diameter of the first layer of the aluminum alloy plate increases approximately as a power function with the increase of the mass of the kinetic energy block, and the fitting error is within 5%. The perforation diameter of the second layer of the aluminum alloy plate also increases approximately as another power function with the increase of impact velocity, and the fitting error is less than 10%. The head velocity of the debris cloud increases linearly with the increase of impact velocity. The research results can lay a foundation for analyzing mass and velocity distribution of debris cloud behind target and establishing impact load model.
-
Material $\, \rho $/(g·cm–3) $ \,\mu $ E/GPa G/GPa A/GPa B/GPa n Tungsten alloy 17.000 0.28 409.6 160.0 1.506 0.177 0.12 Al2024-T351 2.785 0.33 73.4 27.6 0.265 0.426 0.34 Material C m Tm/K Tr/K D1 D2 D3 Tungsten alloy 0.016 1.0 1723 300 1.5 0 0 Al2024-T351 0.015 1.0 775 300 1.0 0 0 Material D4 D5 c/(km·s−1) S1 ${\gamma }{_{0}}$ a ${\sigma }{_{\mathrm{p} }}$/GPa Tungsten alloy 0 0 4.029 1.237 1.54 0.134 3.5 Al2024-T351 0 0 5.328 1.338 2.00 0.875 2.6 表 2 15.9 μs时的数值模拟结果与实验数据[24]的比较
Table 2. Comparison between numerical simulation and experimental result[24] at 15.9 μs
Method dh/cm va/(m·s−1) vr/(m·s−1) Ld/cm dd/cm Simulation 2.00 5320 1860 8.16 6.57 Experiment 1.89 5296 1913 8.11 6.56 Error/% 5.82 0.45 2.77 0.62 0.15 表 3 数值模拟工况
Table 3. Conditions of numerical simulation
Group No. mp/g dp/mm vp/(km·s−1) Group No. mp/g dp/mm vp/(km·s−1) A 1 5 8.16 3 B 1 5 8.16 3 2 45 16.96 3 2 5 8.16 4 3 85 20.98 3 3 5 8.16 5 4 125 23.84 3 4 5 8.16 6 5 165 26.16 3 5 5 8.16 7 6 205 28.12 3 7 250 30.04 3 表 4 第1层铝合金板的穿孔直径
Table 4. Perforation diameter of the first layer of aluminum alloy plate
Case ${d}{_{\mathrm{p} } }$/mm ${d}{_{\mathrm{h},\mathrm{m}\mathrm{a}\mathrm{x} }}$/mm ${d}{_{\mathrm{h},\mathrm{m}\mathrm{i}\mathrm{n} } }$/mm ${d}{_{\mathrm{h} } }$/mm ${d}{_{\mathrm{h} } }/{d}{_{\mathrm{p} } }$ A1 8.16 22.72 22.68 22.70 2.7819 A2 16.96 39.08 39.00 39.04 2.3019 A3 20.98 47.12 45.98 46.55 2.2188 A4 23.84 51.34 50.96 51.15 2.1456 A5 26.16 56.80 56.72 56.76 2.1697 A6 28.12 58.50 57.74 58.12 2.0669 A7 30.04 62.08 59.62 60.85 2.0256 表 5 第1层铝合金穿孔直径的计算数据与数值模拟结果的对比
Table 5. Comparison between calculation and simulation of perforation diameter of the first layer of aluminum alloy plate
mp/g ${d} {_{\mathrm{h} } }/{d}{_{\mathrm{p} } }$ Error/% Calc. Sim. 25 2.4437 2.4835 −1.60 65 2.2683 2.2320 1.63 105 2.1854 2.0982 4.16 145 2.1312 2.0571 3.60 185 2.0912 2.1155 −1.15 225 2.0594 2.0255 1.67 表 6 第2层铝合金板的穿孔直径(
${d}_{\mathrm{p}}$ =8.16 mm)Table 6. Perforation diameter of the second layer of aluminum alloy plate (
${d}_{\mathrm{p}}$ =8.16 mm)Case ${v}{_{\mathrm{p} } }$/(km·s−1) ${d}{_{\mathrm{h},\mathrm{m}\mathrm{a}\mathrm{x} } }$/mm ${d}{_{\mathrm{h},\mathrm{m}\mathrm{i}\mathrm{n} } }$/mm ${d}{_{\mathrm{h} } }$/mm ${d}{_{\mathrm{h} }}/{d}{_{\mathrm{p} } }$ B1 3 36.50 36.48 36.49 4.4718 B2 4 46.08 45.94 46.01 5.6385 B3 5 54.86 52.84 53.85 6.5993 B4 6 61.16 57.84 59.50 7.2917 B5 7 65.94 61.54 63.74 7.8113 表 7 第2层铝合金板穿孔直径的计算结果与数值模拟结果的对比
Table 7. Comparison between calculation and simulation of perforation diameter of the second layer of aluminum alloy plate
${v}{_{\mathrm{p} } }$/(km·s−1) ${d}{_{\mathrm{h} }}/{d}{_{\mathrm{p} }}$ Error/% Calc. Sim. 3.5 5.0670 4.7426 6.84 4.5 5.9888 6.0515 −1.04 5.5 6.8405 6.4877 5.44 6.5 7.6414 7.3627 3.79 -
[1] 张羽. 层间距对多冲击结构超高速撞击损伤特性影响研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.ZHANG Y. Hypervelocity impact damage characteristics research on the impact of protection spacing on multi-shock shields [D]. Harbin: Harbin Institute of Technology, 2012. [2] 江增荣, 李向荣, 李世才, 等. 预制破片对战斗部冲击起爆数值模拟 [J]. 弹道学报, 2009, 21(1): 9–13.JIANG Z R, LI X R, LI S C, et al. Numerical simulation on shock initiation of performed fragment to warhead [J]. Journal of Ballistics, 2009, 21(1): 9–13. [3] 梁斌, 冯高鹏, 魏雪婷. 多枚破片冲击引爆带盖板炸药数值模拟分析 [J]. 弹箭与制导学报, 2013, 33(6): 62–66, 69. doi: 10.3969/j.issn.1673-9728.2013.06.018LIANG B, FENG G P, WEI X T. Numerical simulation on shock initiation of composition explosive of cover board subjected to multi-fragment [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6): 62–66, 69. doi: 10.3969/j.issn.1673-9728.2013.06.018 [4] GUPTA N K, MADHU V. An experimental study of normal and oblique impact of hard-core projectile on single and layered plates [J]. International Journal of Impact Engineering, 1997, 19(5/6): 395–414. doi: 10.1016/S0734-743X(97)00001-8 [5] 董永香, 冯顺山, 段相杰. 弹丸斜侵彻多层金属间隔靶特性研究 [J]. 中北大学学报 (自然科学版), 2010, 31(3): 221–226. doi: 10.3969/j.issn.1673-3193.2010.03.004DONG Y X, FENG S S, DUAN X J. Oblique penetration characteristics of multi-layered spaced targets by steel projectiles [J]. Journal of North University of China (Natural Science Edition), 2010, 31(3): 221–226. doi: 10.3969/j.issn.1673-3193.2010.03.004 [6] 吕珮毅, 张允航, 张曌. 破片形状、着靶姿态对侵彻多层靶影响的数据模拟研究 [J]. 国外电子测量技术, 2021, 40(1): 27–31. doi: 10.19652/j.cnki.femt.2002343LYU P Y, ZHANG Y H, ZHANG Z. Numerical simulation research on the influence of fragment shape and posture on penetrating multi-layer target [J]. Foreign Electronic Measurement Technology, 2021, 40(1): 27–31. doi: 10.19652/j.cnki.femt.2002343 [7] 屈科佛, 姚勇, 邓勇军, 等. 多层靶板抗不同形状高速破片侵彻性能研究 [J]. 兵器装备工程学报, 2020, 41(2): 6–9. doi: 10.11809/bqzbgcxb2020.02.002QU K F, YAO Y, DENG Y J, et al. Numerical study on effect of fragment shape on penetration resistance of multi-layered target [J]. Journal of Ordnance Equipment Engineering, 2020, 41(2): 6–9. doi: 10.11809/bqzbgcxb2020.02.002 [8] DENG Y F, ZHANG W, CAO Z S. Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against ogival-nosed rigid projectiles impact [J]. Materials & Design, 2013, 44: 228–239. doi: 10.1016/j.matdes.2012.06.048 [9] 赵小峰. 破片质量对钨合金破片侵彻威力的影响 [J]. 科学技术与工程, 2020, 20(10): 3967–3971. doi: 10.3969/j.issn.1671-1815.2020.10.025ZHAO X F. Impact of fragment mass on the penetration capacity of tungsten alloy fragment [J]. Science Technology and Engineering, 2020, 20(10): 3967–3971. doi: 10.3969/j.issn.1671-1815.2020.10.025 [10] JOHNSON G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations [J]. Nuclear Engineering and Design, 1994, 150(2/3): 265–274. doi: 10.1016/0029-5493(94)90143-0 [11] JOHNSON G R, BEISSEL S R, GERLACH C A. Another approach to a hybrid particle-finite element algorithm for high-velocity impact [J]. International Journal of Impact Engineering, 2011, 38(5): 397–405. doi: 10.1016/j.ijimpeng.2011.01.002 [12] JOHNSON G R, BEISSEL S R, GERLACH C A. A combined particle-element method for high-velocity impact computations [J]. Procedia Engineering, 2013, 58: 269–278. doi: 10.1016/j.proeng.2013.05.031 [13] RNÁNDEZ-MÉNDEZ S, BONET J, HUERTA A. Continuous blending of SPH with finite elements [J]. Computers and Structures, 2005, 83(17/18): 1448–1458. doi: 10.1016/j.compstruc.2004.10.019 [14] DE VUYST T, VIGNJEVIC R, CAMPBELL J C. Coupling between meshless and finite element methods [J]. International Journal of Impact Engineering, 2005, 31(8): 1054–1064. doi: 10.1016/j.ijimpeng.2004.04.017 [15] SAUER M. Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics [J]. International Journal of Impact Engineering, 2011, 38(6): 511–520. doi: 10.1016/j.ijimpeng.2010.10.023 [16] 王吉, 王肖钧, 卞梁. 光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用 [J]. 爆炸与冲击, 2007, 27(6): 522–528. doi: 10.11883/1001-1455(2007)06-0522-07WANG J, WANG X J, BIAN L. Linking of smoothed particle hydrodynamics method to standard finite element method and its application in impact dynamics [J]. Explosion and Shock Waves, 2007, 27(6): 522–528. doi: 10.11883/1001-1455(2007)06-0522-07 [17] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. doi: 10.6052/0459-1879-13-092HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. doi: 10.6052/0459-1879-13-092 [18] 胡德安, 孙占华, 朱婷. 三维自适应FE-SPH耦合算法在多层间隔金属靶侵彻问题中的应用 [J]. 爆炸与冲击, 2015, 35(3): 416–422. doi: 10.11883/1001-1455-(2015)03-0416-07HU D A, SUN Z H, ZHU T. Application of 3D FE-SPH adaptive coupling algorithm to penetration analysis of spaced multi-layered metallic targets [J]. Explosion and Shock Waves, 2015, 35(3): 416–422. doi: 10.11883/1001-1455-(2015)03-0416-07 [19] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. doi: 10.1016/j.actaastro.2020.05.056 [20] ROHR I, NAHME H, THOMA K, et al. Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates [J]. International Journal of Impact Engineering, 2008, 35(8): 811–819. doi: 10.1016/j.ijimpeng.2007.12.006 [21] 张伟, 庞宝君, 贾斌, 等. 弹丸超高速撞击防护屏碎片云数值模拟 [J]. 高压物理学报, 2004, 18(1): 47–52. doi: 10.11858/gywlxb.2004.01.009ZHANG W, PANG B J, JIA B, et al. Numerical simulation of debris cloud produced by hypervelocity impact of projectile on bumper [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 47–52. doi: 10.11858/gywlxb.2004.01.009 [22] 郝伟江, 龙仁荣, 张庆明, 等. 球形弹丸超高速撞击靶板时背表面材料破碎的数值模拟分析 [J]. 高压物理学报, 2019, 33(2): 024102. doi: 10.11858/gywlxb.20180651HAO W J, LONG R R, ZHANG Q M, et al. Numerical simulation analysis of back fragmentation of sphere by hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024102. doi: 10.11858/gywlxb.20180651 [23] 汪庆桃, 吴克刚, 陈志阳. 圆柱形长杆超高速正碰撞薄板结构破碎效应 [J]. 振动与冲击, 2017, 36(5): 54–60. doi: 10.13465/j.cnki.jvs.2017.05.009WANG Q T, WU K G, CHEN Z Y. Fragmentation effect of a long cylindrical rod with a hypervelocity normally impacting a thin plate structure [J]. Journal of Vibration and Shock, 2017, 36(5): 54–60. doi: 10.13465/j.cnki.jvs.2017.05.009 [24] SIBEAUD J M, HÉREIL P L, ALBOUYS V. Hypervelocity impact on spaced target structures: experimental and Ouranos simulation achievements [J]. International Journal of Impact Engineering, 2003, 29(1): 647−658. [25] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005. [26] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005.TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005.