时效温度对TB8钛合金动态力学性能的影响

陈稳 郭保桥 郭岩松 栾可迪 冉春 陈鹏万

陈稳, 郭保桥, 郭岩松, 栾可迪, 冉春, 陈鹏万. 时效温度对TB8钛合金动态力学性能的影响[J]. 高压物理学报, 2022, 36(5): 054102. doi: 10.11858/gywlxb.20220528
引用本文: 陈稳, 郭保桥, 郭岩松, 栾可迪, 冉春, 陈鹏万. 时效温度对TB8钛合金动态力学性能的影响[J]. 高压物理学报, 2022, 36(5): 054102. doi: 10.11858/gywlxb.20220528
CHEN Wen, GUO Baoqiao, GUO Yansong, LUAN Kedi, RAN Chun, CHEN Pengwan. Effect of Aging Temperature on Dynamic Mechanical Properties of TB8 Titanium Alloy[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054102. doi: 10.11858/gywlxb.20220528
Citation: CHEN Wen, GUO Baoqiao, GUO Yansong, LUAN Kedi, RAN Chun, CHEN Pengwan. Effect of Aging Temperature on Dynamic Mechanical Properties of TB8 Titanium Alloy[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054102. doi: 10.11858/gywlxb.20220528

时效温度对TB8钛合金动态力学性能的影响

doi: 10.11858/gywlxb.20220528
基金项目: 国家自然科学基金(12072038, 12102400)
详细信息
    作者简介:

    陈 稳(1997-),男,硕士研究生,主要从事冲击动力学研究. E-mail:m19800358552@163.com

    通讯作者:

    郭保桥(1976-),男,博士,副教授,主要从事实验力学和冲击动力学研究. E-mail:baoqiao_guo@bit.edu.cn

  • 中图分类号: O344.3; O521.2

Effect of Aging Temperature on Dynamic Mechanical Properties of TB8 Titanium Alloy

  • 摘要: TB8(Ti-15Mo-2.7Nb-3Al-0.2Si)是一种亚稳态β型钛合金,在航空航天领域发挥着重要的作用。微观组织结构、应变和应变率是影响材料力学性能的3大重要因素,基于万能材料试验机和分离式霍普金森压杆(SHPB)测试手段,研究了固溶和时效热处理工艺对TB8钛合金力学性能的影响,并通过光学显微镜和扫描电子显微镜表征材料变形前后的微观组织结构及其断面形貌。结果表明:经过固溶+时效处理后,合金内部析出短条状α相,且时效温度越高,次生相尺寸越大,数量越少;在不同应变率加载条件下,热处理前后的TB8钛合金均表现出明显的应变率强化效应,动态加载条件下应变强化作用不明显;时效温度升高时,高应变率下合金屈服强度降低,塑性升高;动态加载条件下试样的破坏形式为典型的剪切破坏;绝热剪切带是裂纹形成和试样破坏的前兆。

     

  • 图  热处理方案示意图

    Figure  1.  Schematic diagram of heat treatment

    图  SHPB实验示意图

    Figure  2.  Schematic diagram of the SHPB experiment

    图  820 ℃固溶处理前后TB8钛合金的显微结构

    Figure  3.  Microstructure of TB8 titanium alloy before and after solution treatment at 820 ℃

    图  不同热处理后试样的XRD谱

    Figure  4.  XRD spectra of the samples after different heat treatment processes

    图  不同温度时效处理后试样的显微组织形貌

    Figure  5.  Microstructure of the samples at different temperatures

    图  准静态条件下TB8钛合金的应力-应变曲线

    Figure  6.  Stress-strain curves of TB8 titanium alloyunder quasi-static condition

    图  TB8钛合金原始试样动态压缩前后的宏观形貌

    Figure  7.  Macro-morphology of the TB8 titanium alloy specimens before and after dynamic compression

    图  固溶处理前后TB8钛合金在不同应变率下的真实应力-真实应变曲线

    Figure  8.  True stress-true strain curves of TB8 titanium alloy at different strain rates before and after solution treatment

    图  固溶+时效处理的TB8钛合金在不同应变率下的真实应力-真实应变曲线

    Figure  9.  True stress-true strain curves of TB8 titanium alloy treated by solution and aging at different strain rates

    图  10  不同应变率下TB8钛合金的屈服强度随时效温度的变化规律

    Figure  10.  Variations of yield strength of TB8 titanium alloy with aging temperature at different strain rates

    图  11  热处理后TB8钛合金宏观破坏时的真实应力-真实应变曲线

    Figure  11.  True stress-true strain curves of TB8 titanium alloy specimens after heat treatment under macroscopic failure

    图  12  不同应变率下TB8钛合金的平均流变应力随时效温度的变化

    Figure  12.  Variations of average flow stress of TB8 titanium alloy with aging temperature at different strain rates

    图  13  高应变率下TB8钛合金的微观组织形貌

    Figure  13.  Microstructure of TB8 titanium alloy at high strain rates

    图  14  不同温度时效处理后TB8钛合金的断口形貌

    Figure  14.  Fracture morphology of TB8 titanium alloy after aging treatment at different temperatures

    表  1  TB8钛合金各组分的质量分数

    Table  1.   Mass fraction of each component ofTB8 titanium alloy

    CompositionMass fraction/%
    Mo15.33
    Nb 2.63
    Al 3.37
    Si 0.67
    Fe 0.35
    Ti Rest
    下载: 导出CSV

    表  2  固溶处理前后TB8钛合金的屈服强度

    Table  2.   Yield strength of TB8 titanium alloy before and after solution treatment

    Strain rate/s–1Yield strength/MPa
    UntreatedST
    120012051199
    150012181216
    190012241232
    220012581242
    240012541245
    下载: 导出CSV

    表  3  热处理后TB8钛合金宏观破坏时的动态力学性能参数

    Table  3.   Dynamic mechanical properties of TB8 titanium alloy specimens after heat treatment under macroscopic failure

    Heat treatmentStrain rate/s–1Yield strength/MPaFailure strain
    ST240012450.167
    ST+aging at 500 ℃200014300.132
    ST+aging at 550 ℃200013800.142
    ST+aging at 600 ℃220012900.148
    下载: 导出CSV
  • [1] ANKEM S, GREENE C A. Recent developments in microstructure/property relationships of beta titanium alloys [J]. Materials Science and Engineering: A, 1999, 263(2): 127–131. doi: 10.1016/S0921-5093(98)01170-8
    [2] 张昭, 郭保桥, 冉春, 等. 固溶温度对TB6钛合金动态力学性能和微观组织的影响 [J]. 高压物理学报, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762

    ZHANG Z, GUO B Q, RAN C, et al. Effect of solution temperature on dynamic mechanical properties and microstructure of TB6 titanium alloy [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762
    [3] 邹学韬, 张晓晴, 姚小虎. 压剪载荷作用下TB6钛合金的动态力学性能 [J]. 高压物理学报, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713

    ZOU X T, ZHANG X Q, YAO X H. Dynamic behavior of TB6 titanium alloy under shear-compression loading [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713
    [4] DUAN Y P, LI P, XUE K M, et al. Flow behavior and microstructure evolution of TB8 alloy during hot deformation process [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1199–1204. doi: 10.1016/S1003-6326(07)60249-0
    [5] 李敏娜, 马保飞, 郭金明, 等. 高强韧TB8钛合金的热处理制度 [J]. 金属热处理, 2021, 46(9): 116–119. doi: 10.13251/j.issn.0254-6051.2021.09.019

    LI M N, MA B F, GUO J M, et al. Heat treatment of TB8 titanium alloy with high strength and toughness [J]. Heat Treatment of Metals, 2021, 46(9): 116–119. doi: 10.13251/j.issn.0254-6051.2021.09.019
    [6] 张利军, 王幸运, 常辉, 等. 固溶温度对TB8钛合金组织及性能的影响 [J]. 金属热处理, 2013, 38(6): 83–86. doi: 10.13251/j.issn.0254-6051.2013.06.033

    ZHANG L J, WANG X Y, CHANG H, et al. Effects of solution temperature on microstructure and properties of TB8 titanium alloy [J]. Heat Treatment of Metals, 2013, 38(6): 83–86. doi: 10.13251/j.issn.0254-6051.2013.06.033
    [7] 葛鹏, 赵永庆, 周廉. β钛合金的强化机理 [J]. 材料导报, 2005, 19(12): 52–55, 63. doi: 10.3321/j.issn:1005-023X.2005.12.015

    GE P, ZHAO Y Q, ZHOU L. Strengthening mechanism of beta titanium alloys [J]. Materials Review, 2005, 19(12): 52–55, 63. doi: 10.3321/j.issn:1005-023X.2005.12.015
    [8] 赵聪, 石晓辉, 曹聪, 等. 固溶冷却方式和时效温度对TB8钛合金组织和拉伸性能的影响[J/OL]. 热加工工艺, 2022, 51(14): 126−130.

    ZHAO C, SHI X H, CAO C, et al. Effects of solution cooling modes and aging temperature on microstructure and tensile properties of TB8 titanium alloy [J/OL]. Hot Working Technology, 2022, 51(14): 126−130.
    [9] 张利军, 田军强, 白钰, 等. TB8超高强钛合金的热处理工艺 [J]. 中国有色金属学报, 2010, 20(Suppl 1): 670–673. doi: 10.19476/j.ysxb.1004.0609.2010.s1.141

    ZHANG L J, TIAN J Q, BAI Y, et al. Heat treatment process of TB8 titanium alloy [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Suppl 1): 670–673. doi: 10.19476/j.ysxb.1004.0609.2010.s1.141
    [10] 董洪波, 姜智勇, 周盛武, 等. 预时效对TB8钛合金超塑性的影响 [J]. 材料研究学报, 2018, 32(7): 541–546. doi: 10.11901/1005.3093.2017.542

    DONG H B, JIANG Z Y, ZHOU S W, et al. Effect of pre-aging on superplasticity of TB8 Ti-alloy [J]. Chinese Journal of Materials Research, 2018, 32(7): 541–546. doi: 10.11901/1005.3093.2017.542
    [11] 马权, 曹迪. 双级时效处理对TB8合金组织和性能的影响 [J]. 材料热处理学报, 2017, 38(10): 41–45. doi: 10.13289/j.issn.1009-6264.2017-0183

    MA Q, CAO D. Effect of double aging treatment on microstructure and mechanical property of TB8 titanium alloy [J]. Transactions of Materials and Heat Treatment, 2017, 38(10): 41–45. doi: 10.13289/j.issn.1009-6264.2017-0183
    [12] 徐铁伟, 李金山, 张丰收, 等. TB8钛合金双级时效过程中的组织演变及时效响应 [J]. 材料热处理学报, 2016, 37(2): 58–64. doi: 10.13289/j.issn.1009-6264.2016.02.011

    XU T W, LI J S, ZHANG F S, et al. Microstructure evolution and aging response during duplex aging of TB8 titanium alloy [J]. Transactions of Materials and Heat Treatment, 2016, 37(2): 58–64. doi: 10.13289/j.issn.1009-6264.2016.02.011
    [13] FERRERO J G. Candidate materials for high-strength fastener applications in both the aerospace and automotive industries [J]. Journal of Materials Engineering and Performance, 2005, 14(6): 691–696. doi: 10.1361/105994905X75466
    [14] XU T W, LI J S, ZHANG F S, et al. Microstructure evolution during cold-deformation and aging response after annealing of TB8 titanium alloy [J]. Rare Metal Materials and Engineering, 2016, 45(3): 575–580. doi: 10.1016/S1875-5372(16)30075-3
    [15] TANG B, TANG B, HAN F B, et al. Influence of strain rate on stress induced martensitic transformation in β solution treated TB8 alloy [J]. Journal of Alloys and Compounds, 2013, 565: 1–5. doi: 10.1016/j.jallcom.2013.02.173
    [16] 黄伯云, 李成功, 石力开, 等. 中国材料工程大典 [M]. 北京: 化学工业出版社, 2006: 677−678.

    HUANG B Y, LI C G, SHI L K, et al. China materials engineering canon [M]. Beijing: Chemical Industry Press, 2006: 677−678.
    [17] 宁子轩, 王琳, 程兴旺, 等. 分离式霍普金森压杆加载下不同组织Ti-6321钛合金的动态响应行为 [J]. 兵工学报, 2021, 42(4): 862–870. doi: 10.3969/j.issn.1000-1093.2021.04.020

    NING Z X, WANG L, CHENG X W, et al. Dynamic response behaviors of Ti-6321 titanium alloys with different microstructures under split Hopkinson pressure bar loading [J]. Acta Armamentarii, 2021, 42(4): 862–870. doi: 10.3969/j.issn.1000-1093.2021.04.020
    [18] 靳丹, 程兴旺, 郑超, 等. 片层宽度对TC21钛合金动态压缩性能及其绝热剪切敏感性的影响规律 [J]. 稀有金属材料与工程, 2016, 45(11): 2953–2958.

    JIN D, CHENG X W, ZHENG C, et al. Effects of lamellar α thickness on dynamic mechanical properties and sensitivity to adiabatic shear banding of TC21 alloy [J]. Rare Metal Materials and Engineering, 2016, 45(11): 2953–2958.
    [19] 徐雪峰, 王琳, 沙彦刚, 等. TC4 ELI钛合金动态压缩性能及绝热剪切敏感性的研究 [J]. 兵工学报, 2020, 41(2): 366–373. doi: 10.3969/j.issn.1000-1093.2020.02.019

    XU X F, WANG L, SHA Y G, et al. Research on dynamic mechanical properties of TC4 ELI titanium alloy and its sensitivity to adiabatic shear banding [J]. Acta Armamentarii, 2020, 41(2): 366–373. doi: 10.3969/j.issn.1000-1093.2020.02.019
    [20] 冉春, 陈鹏万, 李玲, 等. 中高应变率条件下TC18钛合金动态力学行为的实验研究 [J]. 兵工学报, 2017, 38(9): 1723–1728. doi: 10.3969/j.issn.1000-1093.2017.09.008

    RAN C, CHEN P W, LI L, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates [J]. Acta Armamentarii, 2017, 38(9): 1723–1728. doi: 10.3969/j.issn.1000-1093.2017.09.008
    [21] BAI Y L, XUC Q, XU Y B, et al. Characteristics and microstructure in the evolution of shear localization in Ti-6A1-4V alloy [J]. Mechanics of Materials, 1994, 17(2/3): 155–164. doi: 10.1016/0167-6636(94)90056-6
    [22] 徐铁伟. 高强TB8钛合金相变行为与组织控制研究 [D]. 西安: 西北工业大学, 2016: 101−104.

    XU T W. Study on phase-transformation behaviors and microstructure control of the high-strength TB8 alloy [D]. Xi’an: Northwestern Polytechnical University, 2016: 101−104.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  159
  • PDF下载量:  24
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-03-30
  • 录用日期:  2022-04-08
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回