Analysis on Damage of Double-Helicoidal Carbon Fiber Reinforced Polymer Bionic Structure Inspired by Coelacanth Scales under Hail Load
-
摘要: 为了提高纤维复合材料构件抗冰雹载荷性能,基于腔棘鱼鳞独特的双螺旋结构,建立了以碳纤维增强复合材料为基体的腔棘鱼鳞双螺旋仿生结构数值模型,并验证了该仿生结构模型的有效性。对比分析了双螺旋仿生结构和正交层合结构的毁伤特性,进而探究了冰雹撞击能量及分布密度对该双螺旋仿生结构动态响应的影响。结果表明,双螺旋仿生结构在冰雹作用下的毁伤程度低于相同密度条件下的正交层合结构。当撞击能量达到1149.3 J时,正交层合结构出现了明显的基体破碎及纤维断裂,而双螺旋仿生结构仅表现为撞击区域的浅表分层并伴随少量纤维断裂。双螺旋仿生结构在冰雹撞击下的力学响应可分为3个阶段。随着撞击能量的增加,撞击区域首先发生基体拉伸,撞击点临近区域发生分层及面外凸起;进而分层区域向四周扩展,在冰雹的持续加载下撞击位置的位移达最大值;此后,仿生结构出现回弹直至稳定。该双螺旋仿生结构的能量吸收比率及接触力均随撞击能量的增加而线性增大。在相同质量冰雹的作用下,随着冰雹分布密度的增加,双螺旋仿生结构的上表面损伤程度减小,下表面损伤区域增大。研究结果为基于碳纤维增强复合材料的腔棘鱼鳞仿生结构在冰雹载荷下的轻量化设计奠定了基础。Abstract: In order to improve the impact resistance of fiber composite components under hail load, inspired by the unique double-helicoidal structure of coelacanth scales, a numerical model of the double-helicoidal bionic structure made of carbon fiber reinforced composite was established, and the effectiveness of the bionic structure model was verified. The damage characteristics of the bionic-structure and the orthogonal lamination structure under hail load were compared and analyzed, and the influences of the hail impact energy and the hail distribution on the dynamic response of the double-helicoidal bionic structure were studied. The results show that the damage degree of the double-helicoidal bionic structure under the action of hail is better than the orthogonal laminated structure of the same density. When the impact energy reaches 1149.3 J, the orthogonal laminated structure shows an obvious matrix fracture and a fiber breakage, while the double-helicoidal bionic structure only shows a superficial delamination in the impact area with a small fiber fracture. The mechanical response of the bionic structure under hail impact can be divided into three stages. As the impact energy increases, the impact area firstly shows a matrix stretching, and the area near the impact point is delaminated and bulged out-of-plane; then the delamination area expands to the surrounding area, and the displacement of the impact position reaches the maximum under the continuous load of hail; since then, the bionic structure rebounds until it is stable. Both the energy absorption ratio and the contact force of the double-helicoidal bionic structure increase linearly with the increase of the impact energy. Under the same mass hail load, the damage degree of the upper surface gradually decreases with the increase of hail distribution density, and the damage area on the lower surface gradually increases for the bionic structure. The research results lay a foundation for the lightweight design of the coelacanth scales-inspired bionic structure under hail load.
-
表 1 碳纤维单层板材料参数及层间强度参数
Table 1. Carbon fiber unidirectional plate material and interlaminar strength parameters
ρ/(kg·m−3) E11/GPa E22/GPa E33/GPa ν23 ν12 ν13 G12/GPa 1540 76 14.5 14.5 0.33 0.33 0.33 1.1 G13/GPa G23/GPa Xt/MPa Xc/MPa Yt/MPa Yc/MPa S12/MPa S13/MPa 1.1 1.65 1378 950 40 175 97 97 S23/MPa Knn/GPa Kss/GPa Ktt/GPa $t{_{\rm{n} }^{\rm{o}}}$/MPa $t{_{\rm{s} }^{\rm{o}}}$/MPa $t{_{\text{t} }^{\rm{o}} }$/MPa 45 5.20 3.91 3.91 71 30 30 表 2 冰雹的材料参数
Table 2. Material parameters of the hail
Compressive
strength ratioStrain rate/s−1 Compressive
strength ratioStrain rate/s−1 Compressive
strength ratioStrain rate/s−1 1.05 0.1 2.24 5.0 3.14 100.0 1.54 0.5 2.45 10.0 3.63 500.0 1.75 1.0 2.93 50.0 3.84 1000.0 ρ/(kg·m−3) Elastic modulus/GPa Poisson’s ratio Tension failure pressure/MPa Yield stress/MPa 905 9.38 0.33 0.517 5.2 表 4 不同结构的能量变化
Table 4. Energy changes of different structures
Structure type Eik/J Eε/J Erk/J Ea/J R/% Double-helicoidal
structure127.7 74.3 3.2 50.2 39.3 287.3 151.0 16.5 119.8 41.7 510.8 217.5 64.0 229.3 44.9 798.1 300.9 111.6 385.6 48.3 1149.3 385.8 143.9 619.6 53.9 Orthogonal structure 1149.3 351.7 70.9 726.7 63.2 -
[1] VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1–5. doi: 10.1016/S0924-0136(00)00411-8 [2] VALLONS K, BEHAEGHE A, LOMOV S V, et al. Impact and post-impact properties of a carbon fibre non-crimp fabric and a twill weave composite [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 1019–1026. doi: 10.1016/j.compositesa.2010.04.008 [3] DOLATI S H, REZAEEPAZHAND J, SHARIATI M. Numerical simulation of hail impact response of hybrid corrugated core sandwich panels [J]. Journal of Reinforced Plastics and Composites, 2019, 38(14): 643–657. doi: 10.1177/0731684419838332 [4] 莫袁鸣, 赵振华, 罗刚, 等. 复合材料层合板冰雹冲击损伤研究 [J]. 重庆理工大学学报(自然科学), 2020, 34(3): 112–121. doi: 10.3969/j.issn.1674-8425(z).2020.03.017MO Y M, ZHAO Z H, LUO G, et al. Investigation on damage of composite laminates subject to hail impact [J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(3): 112–121. doi: 10.3969/j.issn.1674-8425(z).2020.03.017 [5] WANG B, XIONG J, WANG X J, et al. Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact [J]. Materials & Design, 2013, 50: 140–148. doi: 10.1016/j.matdes.2013.01.046 [6] 刘建刚, 李玉龙, 索涛, 等. 复合材料T型接头冰雹高速撞击损伤的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 451–456. doi: 10.11883/1001-1455(2014)04-0451-06LIU J G, LI Y L, SUO T, et al. Numerical simulation of high velocity impact of composite T-joint by hailstone [J]. Explosion and Shock Waves, 2014, 34(4): 451–456. doi: 10.11883/1001-1455(2014)04-0451-06 [7] 张海广, 王瑜, 安连浩, 等. 冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟 [J]. 高压物理学报, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776ZHANG H G, WANG Y, AN L H, et al. Experimental study and numerical simulation of dynamic fracture behavior of branch staggered laminated biomimetic composites under impact loading [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776 [8] SHANG J S, NGERN N H H, TAN V B C. Crustacean-inspired helicoidal laminates [J]. Composites Science and Technology, 2016, 128: 222–232. doi: 10.1016/j.compscitech.2016.04.007 [9] 王瑜, 武晓东, 安连浩, 等. 仿生螺旋结构复合材料动态断裂行为的实验研究和数值模拟 [J]. 复合材料学报, 2022.WANG Y, WU X D, AN L H, et al. Experimental study and numerical simulation of dynamic fracture behavior of biomimetic spiral structured composite [J]. Acta Materiae Compositae Sinica, 2022. [10] 田野, 罗荣超, 廖昌宇, 等. 仿生蛛网结构有机硅胶缓冲垫缓冲性能 [J]. 包装工程, 2022, 43(3): 155–160. doi: 10.19554/j.cnki.1001-3563.2022.03.019TIAN Y, LUO R C, LIAO C Y, et al. Cushioning performance of biomimetic cobweb silicone cushion [J]. Packaging Engineering, 2022, 43(3): 155–160. doi: 10.19554/j.cnki.1001-3563.2022.03.019 [11] YIN S, YANG R H, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites [J]. Composites Science and Technology, 2021, 205: 108650. doi: 10.1016/j.compscitech.2021.108650 [12] SHOKRIEH M M, REZAEI D. Analysis and optimization of a composite leaf spring [J]. Composite Structures, 2003, 60(3): 317–325. doi: 10.1016/S0263-8223(02)00349-5 [13] HUANG H B, MA X, QIAO J W, et al. Numerical simulation of failure behaviors of CFRP laminates on hashin model coupled with cohesive elements [J]. IOP Conference Series: Materials Science and Engineering, 2018, 382(3): 032062. doi: 10.1088/1757-899X/382/3/032062 [14] 陈星. 基于ABAQUS的冰雹撞击有限元分析 [D]. 呼和浩特: 内蒙古工业大学, 2013: 37−47.CHEN X. Finite element analysis for hail impact dependent on ABAOUS [D]. Hohhot: Inner Mongolia University of Technology, 2013: 37−47. [15] RHYMER J D. Force criterion prediction of damage for carbon/epoxy composite panels impacted by high velocity ice [D]. San Diego: University of California, 2012.