冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析

韩登安 徐丹 叶仁传 任鹏

韩登安, 徐丹, 叶仁传, 任鹏. 冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析[J]. 高压物理学报, 2022, 36(4): 044205. doi: 10.11858/gywlxb.20220526
引用本文: 韩登安, 徐丹, 叶仁传, 任鹏. 冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析[J]. 高压物理学报, 2022, 36(4): 044205. doi: 10.11858/gywlxb.20220526
HAN Deng’an, XU Dan, YE Renchuan, REN Peng. Analysis on Damage of Double-Helicoidal Carbon Fiber Reinforced Polymer Bionic Structure Inspired by Coelacanth Scales under Hail Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044205. doi: 10.11858/gywlxb.20220526
Citation: HAN Deng’an, XU Dan, YE Renchuan, REN Peng. Analysis on Damage of Double-Helicoidal Carbon Fiber Reinforced Polymer Bionic Structure Inspired by Coelacanth Scales under Hail Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044205. doi: 10.11858/gywlxb.20220526

冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析

doi: 10.11858/gywlxb.20220526
基金项目: 国家自然科学基金(52001145)
详细信息
    作者简介:

    韩登安(1996-),男,硕士研究生,主要从事冲击动力学研究. E-mail:1778011765@qq.com

    通讯作者:

    任 鹏(1984-),男,博士,副教授,主要从事冲击动力学研究. E-mail:renpeng@just.edu.cn

  • 中图分类号: O341; O521.2

Analysis on Damage of Double-Helicoidal Carbon Fiber Reinforced Polymer Bionic Structure Inspired by Coelacanth Scales under Hail Load

  • 摘要: 为了提高纤维复合材料构件抗冰雹载荷性能,基于腔棘鱼鳞独特的双螺旋结构,建立了以碳纤维增强复合材料为基体的腔棘鱼鳞双螺旋仿生结构数值模型,并验证了该仿生结构模型的有效性。对比分析了双螺旋仿生结构和正交层合结构的毁伤特性,进而探究了冰雹撞击能量及分布密度对该双螺旋仿生结构动态响应的影响。结果表明,双螺旋仿生结构在冰雹作用下的毁伤程度低于相同密度条件下的正交层合结构。当撞击能量达到1149.3 J时,正交层合结构出现了明显的基体破碎及纤维断裂,而双螺旋仿生结构仅表现为撞击区域的浅表分层并伴随少量纤维断裂。双螺旋仿生结构在冰雹撞击下的力学响应可分为3个阶段。随着撞击能量的增加,撞击区域首先发生基体拉伸,撞击点临近区域发生分层及面外凸起;进而分层区域向四周扩展,在冰雹的持续加载下撞击位置的位移达最大值;此后,仿生结构出现回弹直至稳定。该双螺旋仿生结构的能量吸收比率及接触力均随撞击能量的增加而线性增大。在相同质量冰雹的作用下,随着冰雹分布密度的增加,双螺旋仿生结构的上表面损伤程度减小,下表面损伤区域增大。研究结果为基于碳纤维增强复合材料的腔棘鱼鳞仿生结构在冰雹载荷下的轻量化设计奠定了基础。

     

  • 图  双螺旋仿生结构

    Figure  1.  Double-helicoidal bionic structure

    图  实验[11, 15]和数值模拟得到的接触力曲线及损伤对比

    Figure  2.  Comparisons between experiment[11, 15] and simulation of contact force curve and damage appearance

    图  相同撞击能量下双螺旋仿生结构和正交层合结构的响应曲线

    Figure  3.  Response curves of double-helicoidal bionic structure and orthogonal laminated structure under the same impact energy

    图  冰雹高速撞击下双螺旋仿生结构和正交层合结构的动态损伤

    Figure  4.  Dynamic damage of double-helicoidal bionic structure and orthogonal laminated structure under hail high-speed impact

    图  不同撞击能量下双螺旋仿生结构的动态响应曲线:(a)接触力曲线,(b)撞击点位移曲线

    Figure  5.  Dynamic response curves of double-helicoidal bionic structure under different impact energies: (a) contact force curves, (b) impact center displacement curves

    图  不同撞击能量下双螺旋仿生结构的接触力峰值(a)和能量吸收比(b)

    Figure  6.  Peak contact force (a) and energy absorption ratio (b) of double-helicoidal bionic structure under different impact energies

    图  不同撞击能量下双螺旋仿生结构的损伤

    Figure  7.  Damage of double-helicoidal bionic structure under different impact energies

    图  双螺旋仿生结构在不同冰雹分布密度下的损伤

    Figure  8.  Damage of double-helicoidal bionic structure under different hail distribution densities

    图  不同冰雹分布密度下双螺旋仿生结构等效撞击中心的最大位移

    Figure  9.  Center displacement in the equivalent impact domain of double-helicoidal bionic structure under different hail distribution densities

    表  1  碳纤维单层板材料参数及层间强度参数

    Table  1.   Carbon fiber unidirectional plate material and interlaminar strength parameters

    ρ/(kg·m−3)E11/GPaE22/GPaE33/GPaν23ν12ν13G12/GPa
    15407614.514.50.330.330.331.1
    G13/GPaG23/GPaXt/MPaXc/MPaYt/MPaYc/MPaS12/MPaS13/MPa
    1.11.651378950401759797
    S23/MPaKnn/GPaKss/GPaKtt/GPa$t{_{\rm{n} }^{\rm{o}}}$/MPa$t{_{\rm{s} }^{\rm{o}}}$/MPa$t{_{\text{t} }^{\rm{o}} }$/MPa
    455.203.913.91713030
    下载: 导出CSV

    表  2  冰雹的材料参数

    Table  2.   Material parameters of the hail

    Compressive
    strength ratio
    Strain rate/s−1 Compressive
    strength ratio
    Strain rate/s−1 Compressive
    strength ratio
    Strain rate/s−1
    1.050.1 2.245.0 3.14100.0
    1.540.52.4510.03.63500.0
    1.751.02.9350.03.841000.0
    下载: 导出CSV

    表  3  冰雹的材料参数[14]

    Table  3.   Material parameters of the hail[14]

    ρ/(kg·m−3)Elastic modulus/GPaPoisson’s ratioTension failure pressure/MPaYield stress/MPa
    9059.380.330.5175.2
    下载: 导出CSV

    表  4  不同结构的能量变化

    Table  4.   Energy changes of different structures

    Structure typeEik/JEε/JErk/JEa/JR/%
    Double-helicoidal
    structure
    127.774.33.250.239.3
    287.3151.016.5119.841.7
    510.8217.564.0229.344.9
    798.1300.9111.6385.648.3
    1149.3385.8143.9619.653.9
    Orthogonal structure1149.3351.770.9726.763.2
    下载: 导出CSV
  • [1] VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1–5. doi: 10.1016/S0924-0136(00)00411-8
    [2] VALLONS K, BEHAEGHE A, LOMOV S V, et al. Impact and post-impact properties of a carbon fibre non-crimp fabric and a twill weave composite [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 1019–1026. doi: 10.1016/j.compositesa.2010.04.008
    [3] DOLATI S H, REZAEEPAZHAND J, SHARIATI M. Numerical simulation of hail impact response of hybrid corrugated core sandwich panels [J]. Journal of Reinforced Plastics and Composites, 2019, 38(14): 643–657. doi: 10.1177/0731684419838332
    [4] 莫袁鸣, 赵振华, 罗刚, 等. 复合材料层合板冰雹冲击损伤研究 [J]. 重庆理工大学学报(自然科学), 2020, 34(3): 112–121. doi: 10.3969/j.issn.1674-8425(z).2020.03.017

    MO Y M, ZHAO Z H, LUO G, et al. Investigation on damage of composite laminates subject to hail impact [J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(3): 112–121. doi: 10.3969/j.issn.1674-8425(z).2020.03.017
    [5] WANG B, XIONG J, WANG X J, et al. Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact [J]. Materials & Design, 2013, 50: 140–148. doi: 10.1016/j.matdes.2013.01.046
    [6] 刘建刚, 李玉龙, 索涛, 等. 复合材料T型接头冰雹高速撞击损伤的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 451–456. doi: 10.11883/1001-1455(2014)04-0451-06

    LIU J G, LI Y L, SUO T, et al. Numerical simulation of high velocity impact of composite T-joint by hailstone [J]. Explosion and Shock Waves, 2014, 34(4): 451–456. doi: 10.11883/1001-1455(2014)04-0451-06
    [7] 张海广, 王瑜, 安连浩, 等. 冲击载荷下分支交错层状仿生复合材料动态断裂行为的实验研究和数值模拟 [J]. 高压物理学报, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776

    ZHANG H G, WANG Y, AN L H, et al. Experimental study and numerical simulation of dynamic fracture behavior of branch staggered laminated biomimetic composites under impact loading [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776
    [8] SHANG J S, NGERN N H H, TAN V B C. Crustacean-inspired helicoidal laminates [J]. Composites Science and Technology, 2016, 128: 222–232. doi: 10.1016/j.compscitech.2016.04.007
    [9] 王瑜, 武晓东, 安连浩, 等. 仿生螺旋结构复合材料动态断裂行为的实验研究和数值模拟 [J]. 复合材料学报, 2022.

    WANG Y, WU X D, AN L H, et al. Experimental study and numerical simulation of dynamic fracture behavior of biomimetic spiral structured composite [J]. Acta Materiae Compositae Sinica, 2022.
    [10] 田野, 罗荣超, 廖昌宇, 等. 仿生蛛网结构有机硅胶缓冲垫缓冲性能 [J]. 包装工程, 2022, 43(3): 155–160. doi: 10.19554/j.cnki.1001-3563.2022.03.019

    TIAN Y, LUO R C, LIAO C Y, et al. Cushioning performance of biomimetic cobweb silicone cushion [J]. Packaging Engineering, 2022, 43(3): 155–160. doi: 10.19554/j.cnki.1001-3563.2022.03.019
    [11] YIN S, YANG R H, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites [J]. Composites Science and Technology, 2021, 205: 108650. doi: 10.1016/j.compscitech.2021.108650
    [12] SHOKRIEH M M, REZAEI D. Analysis and optimization of a composite leaf spring [J]. Composite Structures, 2003, 60(3): 317–325. doi: 10.1016/S0263-8223(02)00349-5
    [13] HUANG H B, MA X, QIAO J W, et al. Numerical simulation of failure behaviors of CFRP laminates on hashin model coupled with cohesive elements [J]. IOP Conference Series: Materials Science and Engineering, 2018, 382(3): 032062. doi: 10.1088/1757-899X/382/3/032062
    [14] 陈星. 基于ABAQUS的冰雹撞击有限元分析 [D]. 呼和浩特: 内蒙古工业大学, 2013: 37−47.

    CHEN X. Finite element analysis for hail impact dependent on ABAOUS [D]. Hohhot: Inner Mongolia University of Technology, 2013: 37−47.
    [15] RHYMER J D. Force criterion prediction of damage for carbon/epoxy composite panels impacted by high velocity ice [D]. San Diego: University of California, 2012.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  165
  • PDF下载量:  31
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2022-04-06
  • 网络出版日期:  2022-07-16
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回