High-Pressure Raman Spectroscopy of hcp Metals
-
摘要: 通过高压拉曼光谱可以从微观角度研究高压下材料的晶格动力学行为。然而,受金刚石荧光与金属样品强反射的影响,高压下金属样品的拉曼光谱信号较难获得。为此,发展了一种简易的金刚石对顶砧倾角散射高压拉曼光谱技术,可实现六角密排结构(hcp)金属样品的高压拉曼光谱信号测量。以hcp金属Be为例,通过测量最高压力达73 GPa时的剪切拉曼模E2g,获得了其弹性常数C44随压力的变化关系。所提出的金刚石对顶砧倾角散射高压拉曼光谱技术为研究金属材料的成键状态、电子结构、声子-电子耦合效应提供一种新手段。Abstract: The lattice dynamics behavior of materials under high pressure can be studied by high-pressure Raman spectroscopy. However, Raman spectroscopic signal of metal samples at high pressure is difficult to obtain due to the fluorescence of the diamond in diamond anvil cell (DAC) and the strong reflection of the samples. In this work, we use DAC inclination scattering method to mitigate background noise. As a consequence, Raman spectroscopic signal of the hcp metal samples (Be, Re, Os) under high pressure have been achieved. In the case of Be, the pressure dependence of elastic constant C44 is obtained by measuring the shear Raman mode E2g at pressure up to 73 GPa. The proposed high-pressure Raman spectroscopy technique provides a new method to study bonding state, electronic structure, and phonon-electron coupling effects of metallic materials under high pressure.
-
Key words:
- hcp metals /
- high pressure /
- Raman scattering /
- elastic properties
-
图 6 采用背散射法测量得到的 (a) Re在195 GPa下、(b) Os在73 GPa下、(c) Be在48 GPa下的拉曼光谱,以及采用DAC倾角散射法测量得到的 (d) Re在195 GPa下、(e) Os在73 GPa下、(f) Be在48 GPa下的拉曼光谱
Figure 6. Backscattering method obtained Raman scattering spectra of (a) Re at 195 GPa, (b) Os at 73 GPa and (c) Be at 48 GPa; DAC inclination scattering method obtained Raman scattering spectra of (d) Re at 195 GPa, (e) Os at 73 GPa and (f) Be at 48 GPa
表 1 不同的hcp金属零压下的拉曼声子频率ω0及压力系数α和β
Table 1. Zero-pressure Raman phonon frequency ω0 and pressure coefficients α and β for different hcp metals
Sample Pressure range/GPa ω0/cm−1 αp=0 βp=0 Ref. Be 0−73 463.4 2.622 −6.6×10−3 This work 0−77 459 2.806 −1.1×10−2 Evans, et al.[41] 0−23 455.8 3.559 −3.51×10−2 Olijnyk, et al.[24] 0 463 Frass, et al.[42] 0 455 Feldman, et al.[39] Os 0−211 164.2 0.591 −1.05×10−3 Liu, et al.[34] 0−13 164.8 0.739 −7.82×10−3 Ponosov, et al.[43] Re 0−205 121.3 0.438 −4.94×10−4 Liu, et al.[34] 0−20 120 0.56 −7.8×10−4 Qi, et al.[44] 0−63 121.3 0.573 −1.54×10−3 Olijnyk, et al.[25] 0−43 119 0.694 −4.25×10−3 Goncharov, et al.[45] (under hydrostatic) 0−138 119.9 0.468 −9.04×10−4 Goncharov, et al.[45] (under nonhydrostatic) A1 不同压力下Be的拉曼峰频率
A1. Raman shifts of Be under different pressures
Exp. No. p/GPa ω/cm−1 Exp. No. p/GPa ω/cm−1 Exp. No. p/GPa ω/cm−1 1 0 456.0 1 16.8 502.2 2 25.8 529.3 0.1 456.9 17.3 503.8 27.0 528.0 1.6 460.8 17.4 505.5 29.1 534.4 2.8 473.5 18.6 507.7 31.8 540.0 4.2 469.7 20.0 509.4 34.0 542.3 5.9 473.5 21.0 512.7 34.6 548.7 6.4 478.8 21.6 511.2 36.3 550.0 10.3 489.3 22.0 513.2 39.3 557.2 10.7 493.3 22.8 516.0 44.8 566.6 13.3 493.0 23.4 515.6 48.6 573.3 13.4 494.8 23.6 516.0 50.0 577.9 14.1 497.0 26.4 515.6 53.5 581.2 14.3 497.4 28.8 523.0 55.0 590.2 14.5 499.5 30.0 534.9 58.0 592.9 15.1 496.4 1 0 463.6 60.0 597.8 15.2 496.3 13.1 497.1 62.0 603.3 15.9 499.4 16.6 505.0 68.0 614.4 16.4 503.8 21.0 514.0 69.0 610.5 16.5 501.6 23.9 521.6 73.0 617.1 A2 Be在不同压力下的弹性剪切参数及其误差
A2. Elastic shear parameter and their errors at different pressures of Be
p/GPa ω/cm−1 a/Å δa/Å c/Å δc/Å C44/GPa $\delta{_{C_{44}} }$/GPa Error/% 0 463.6 2.258 ±0.004 3.519 ±0.011 113.7 ±0.07 0.06 13.1 497.1 2.210 ±0.006 3.453 ±0.015 133.9 ±0.11 0.09 16.6 505.0 2.198 ±0.006 3.436 ±0.016 139.1 ±0.13 0.09 21.0 514.0 2.182 ±0.007 3.415 ±0.017 145.2 ±0.15 0.10 23.9 521.6 2.173 ±0.007 3.402 ±0.018 150.3 ±0.16 0.11 25.8 529.3 2.166 ±0.007 3.393 ±0.019 155.3 ±0.17 0.11 27.0 528.0 2.162 ±0.007 3.388 ±0.019 154.8 ±0.18 0.11 29.1 534.4 2.155 ±0.008 3.378 ±0.020 159.2 ±0.19 0.12 31.8 540.0 2.147 ±0.008 3.366 ±0.021 163.2 ±0.20 0.12 34.0 542.3 2.140 ±0.008 3.357 ±0.022 165.2 ±0.21 0.13 34.6 548.7 2.138 ±0.008 3.354 ±0.022 169.3 ±0.22 0.13 36.3 550.0 2.132 ±0.009 3.347 ±0.022 170.6 ±0.23 0.14 39.3 557.2 2.123 ±0.009 3.334 ±0.024 176.0 ±0.25 0.14 44.8 566.6 2.107 ±0.010 3.311 ±0.026 183.6 ±0.29 0.16 48.6 573.3 2.095 ±0.010 3.296 ±0.027 189.1 ±0.32 0.17 50.0 577.9 2.091 ±0.011 3.291 ±0.028 192.6 ±0.33 0.17 53.5 581.2 2.081 ±0.011 3.277 ±0.029 195.8 ±0.35 0.18 55.0 590.2 2.077 ±0.011 3.271 ±0.030 202.4 ±0.38 0.19 58.0 592.9 2.069 ±0.012 3.260 ±0.031 205.2 ±0.40 0.19 60.0 597.8 2.064 ±0.012 3.253 ±0.032 209.2 ±0.42 0.20 62.0 603.3 2.058 ±0.012 3.246 ±0.032 213.7 ±0.44 0.21 68.0 614.4 2.043 ±0.013 3.224 ±0.035 223.6 ±0.50 0.23 69.0 610.5 2.040 ±0.014 3.221 ±0.035 221.1 ±0.51 0.23 73.0 617.1 2.030 ±0.014 3.207 ±0.037 227.2 ±0.55 0.24 -
[1] LAZICKI A, DEWAELE A, LOUBEYRE P, et al. High-pressure-temperature phase diagram and the equation of state of beryllium [J]. Physical Review B, 2012, 86(17): 174118. doi: 10.1103/PhysRevB.86.174118 [2] VERMA A K, RAVINDRAN P, RAO R S, et al. On the stability of rhenium up to 1 TPa pressure against transition to the bcc structure [J]. Bulletin of Materials Science, 2003, 26(1): 183–187. doi: 10.1007/BF02712810 [3] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160 [4] DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals [J]. Nature, 2015, 525(7568): 226–229. doi: 10.1038/nature14681 [5] MERKEL S, GONCHAROV A F, MAO H K, et al. Raman spectroscopy of iron to 152 gigapascals: implications for earth’s inner core [J]. Science, 2000, 288(5471): 1626–1629. doi: 10.1126/science.288.5471.1626 [6] GONCHAROV A F, STRUZHKIN V V. Raman spectroscopy of metals, high-temperature superconductors and related materials under high pressure [J]. Journal of Raman Spectroscopy, 2003, 34(7/8): 532–548. [7] 雷力, 蒲梅芳, 冯雷豪, 等. 立方聚合氮(cg-N)的高温高压合成 [J]. 高压物理学报, 2018, 32(2): 020102. doi: 10.11858/gywlxb.20170672LEI L, PU M F, FENG L H, et al. Synthesis of cubic gauche nitrogen (cg-N) under high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020102. doi: 10.11858/gywlxb.20170672 [8] 高上攀, 姜小东, 胡启威, 等. Re3N的变温拉曼散射与高压同步辐射研究 [J]. 光散射学报, 2017, 29(1): 33–38.GAO S P, JIANG X D, HU Q W, et al. Temperature dependence on Raman spectra and high-pressure synchrotron radiation study of Re3N [J]. The Journal of Light Scattering, 2017, 29(1): 33–38. [9] 范春梅, 刘静仪, 刘珊, 等. 氮化镓低温高压光谱研究 [J]. 光散射学报, 2020, 32(3): 259–265. doi: 10.13883/j.issn1004-5929.202003010FAN C M, LIU J Y, LIU S, et al. Low-temperature and high-pressure spectroscopy study of gallium nitride [J]. The Journal of Light Scattering, 2020, 32(3): 259–265. doi: 10.13883/j.issn1004-5929.202003010 [10] 张峰, 陶雨, 唐琦琪, 等. 三氧化二镓的高压拉曼光谱研究 [J]. 光散射学报, 2021, 33(1): 40–44. doi: 10.13883/j.issn1004-5929.202101005ZHANG F, TAO Y, TANG Q Q, et al. High-pressure Raman spectroscopy of Ga2O3 [J]. The Journal of Light Scattering, 2021, 33(1): 40–44. doi: 10.13883/j.issn1004-5929.202101005 [11] RECH G L, ZORZI J E, PEROTTONI C A. Equation of state of hexagonal-close-packed rhenium in the terapascal regime [J]. Physical Review B, 2019, 100(17): 174107. doi: 10.1103/PhysRevB.100.174107 [12] OCCELLI F, FARBER D L, BADRO J, et al. Experimental evidence for a high-pressure isostructural phase transition in osmium [J]. Physical Review Letters, 2004, 93(9): 095502. doi: 10.1103/PhysRevLett.93.095502 [13] MA Y M, CUI T, ZHANG L J, et al. Electronic and crystal structures of osmium under high pressure [J]. Physical Review B, 2005, 72(17): 174103. doi: 10.1103/PhysRevB.72.174103 [14] PERREAULT C S, VELISAVLJEVIC N, VOHRA Y K. High-pressure structural parameters and equation of state of osmium to 207 GPa [J]. Cogent Physics, 2017, 4(1): 1376899. doi: 10.1080/23311940.2017.1376899 [15] KOUDELA D, RICHTER M, MÖBIUS A, et al. Lifshitz transitions and elastic properties of osmium under pressure [J]. Physical Review B, 2006, 74(21): 214103. doi: 10.1103/PhysRevB.74.214103 [16] GLAZYRIN K, POUROVSKII L V, DUBROVINSKY L, et al. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition [J]. Physical Review Letters, 2013, 110(11): 117206. doi: 10.1103/PhysRevLett.110.117206 [17] STEINLE-NEUMANN G, STIXRUDE L, COHEN R E. Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure [J]. Physical Review B, 2001, 63(5): 054103. [18] GILLET P, HEMLEY R J, MCMILLAN P F. Vibrational properties at high pressures and temperatures [J]. Reviews in Mineralogy and Geochemistry, 1998, 37(1): 525–590. [19] OLIJNYK H. Raman scattering in metallic Si and Ge up to 50 GPa [J]. Physical Review Letters, 1992, 68(14): 2232–2234. doi: 10.1103/PhysRevLett.68.2232 [20] OLIJNYK H. High pressure Raman spectra of Gd, Lu and Y [J]. High Pressure Research, 1994, 13(1): 99–102. [21] OLIJNYK H, JEPHCOAT A P. Effect of pressure on Raman phonons in zirconium metal [J]. Physical Review B, 1997, 56(17): 10751–10753. doi: 10.1103/PhysRevB.56.10751 [22] OLIJNYK H. Unusual broadening and splitting of the K≈0 transverse-optical phonon in hcp Mg at high pressure [J]. Journal of Physics: Condensed Matter, 1999, 11(34): 6589–6594. doi: 10.1088/0953-8984/11/34/311 [23] OLIJNYK H, JEPHCOAT A P, NOVIKOV D L, et al. Pressure shift of the zone-center TO mode of Zn [J]. Physical Review B, 2000, 62(9): 5508–5512. doi: 10.1103/PhysRevB.62.5508 [24] OLIJNYK H, JEPHCOAT A P. Raman spectra of beryllium to 23 GPa [J]. Journal of Physics: Condensed Matter, 2000, 12(41): 8913–8918. doi: 10.1088/0953-8984/12/41/317 [25] OLIJNYK H, JEPHCOAT A P, REFSON K. On optical phonons and elasticity in the hcp transition metals Fe, Ru and Re at high pressure [J]. Europhysics Letters, 2001, 53(4): 504–510. doi: 10.1209/epl/i2001-00181-4 [26] OLIJNYK H, GROSSHANS W A, JEPHCOAT A P. Lattice vibrations and electronic transitions in the rare-earth metals: praseodymium under pressure [J]. Physical Review Letters, 2004, 93(25): 255505. doi: 10.1103/PhysRevLett.93.255505 [27] OLIJNYK H, NAKANO S, JEPHCOAT A P, et al. Lattice-dynamical studies of Ti in the hcp- and ω-phase by Raman scattering at high-pressure [J]. Physical Review B, 2006, 74(10): 104302. doi: 10.1103/PhysRevB.74.104302 [28] OLIJNYK H, NAKANO S, JEPHCOAT A P, et al. Unusual pressure response of the E2g mode and elastic shear modulus C44 in hcp scandium [J]. Journal of Physics: Condensed Matter, 2006, 18(48): 10971–10976. doi: 10.1088/0953-8984/18/48/024 [29] OLIJNYK H, NAKANO S, TAKEMURA K. Vibrational and elastic properties of hcp barium under pressure and their relation to its electronic structure [J]. Solid State Communications, 2007, 142(1/2): 41–44. [30] GONCHAROV A F, CROWHURST J, ZAUG J M. Elastic and vibrational properties of cobalt to 120 GPa [J]. Physical Review Letters, 2004, 92(11): 115502. doi: 10.1103/PhysRevLett.92.115502 [31] GONCHAROV A F, STRUZHKIN V V, MAO H K, et al. Spectroscopic evidence for broken-symmetry transitions in dense lithium up to megabar pressures [J]. Physical Review B, 2005, 71(18): 184114. doi: 10.1103/PhysRevB.71.184114 [32] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786 [33] NOVOSELOV D, ANISIMOV V I, PONOSOV Y S. Phonon mode softening and elastic properties of hafnium under pressure [J]. Physical Review B, 2018, 97(18): 184108. doi: 10.1103/PhysRevB.97.184108 [34] LIU J Y, TAO Y, FAN C M, et al. High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44 [J]. Chinese Physics B, 2022, 31(3): 037801. doi: 10.1088/1674-1056/ac1eff [35] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673 [36] AKAHAMA Y, KAWAMURA H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range [J]. Journal of Applied Physics, 2004, 96(7): 3748–3751. doi: 10.1063/1.1778482 [37] LIU S, TANG Q Q, WU B B, et al. Raman scattering from highly-stressed anvil diamond [J]. Chinese Physics B, 2021, 30(1): 016301. doi: 10.1088/1674-1056/abc7a7 [38] PU M F, ZHANG F, LIU S, et al. Tensile-strain induced phonon splitting in diamond [J]. Chinese Physics B, 2019, 28(5): 053102. doi: 10.1088/1674-1056/28/5/053102 [39] FELDMAN D W, PARKER J H JR, ASHKIN M. Raman scattering by optical modes of metals [J]. Physical Review Letters, 1968, 21(9): 607–608. doi: 10.1103/PhysRevLett.21.607 [40] VELISAVLJEVIC N, CHESNUT G N, VOHRA Y K, et al. Structural and electrical properties of beryllium metal to 66 GPa studied using designer diamond anvils [J]. Physical Review B, 2002, 65(17): 172107. doi: 10.1103/PhysRevB.65.172107 [41] EVANS W J, LIPP M J, CYNN H, et al. X-ray diffraction and Raman studies of beryllium: static and elastic properties at high pressures [J]. Physical Review B, 2005, 72(9): 094113. doi: 10.1103/PhysRevB.72.094113 [42] FRAAS L M, PORTO S P S, LOH E. Symmetry in Raman scattering from the optical phonon in single crystal beryllium [J]. Solid State Communications, 1970, 8(10): 803–805. doi: 10.1016/0038-1098(70)90436-9 [43] PONOSOV Y S, STRUZHKIN V V, GONCHAROV A F, et al. Q-dependent electronic excitations in osmium: pressure- and temperature-induced effects [J]. Physical Review B, 2008, 78(24): 245106. doi: 10.1103/PhysRevB.78.245106 [44] 戚磊, 雷力, 冯雷豪, 等. 铼的弹性剪切参数C44对温度与压力响应的原位拉曼光谱研究 [J]. 光谱学与光谱分析, 2018, 38(12): 3764–3768.QI L, LEI L, FENG L H, et al. Response of elastic shear parameter C44 of rhenium to temperature and pressure: a Raman spectroscopy study [J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3764–3768. [45] GONCHAROV A F, GREGORYANZ E, STRUZHKIN V V, et al. Raman scattering of metals to very high pressures [EB/OL]. (2001−12−20). https://arxiv.org/abs/cond-mat/0112404. [46] UPADHYAYA J C, SHARMA D K, PRAKASH D, et al. Three-particle forces in the lattice dynamics of some hexagonal close-packed metals [J]. Canadian Journal of Physics, 1994, 72(1/2): 61–72. [47] OLIJNYK H, JEPHCOAT A P. The E2g phonon and the elastic constant C44 in hexagonal van der Waals bonded solids [J]. Journal of Physics: Condensed Matter, 2000, 12(50): 10423–10428. doi: 10.1088/0953-8984/12/50/305