[1] |
CHEN P W, HUANG F L, DING Y S. Microstructure, deformation and failure of polymer bonded explosives [J]. Journal of Materials Science, 2007, 42(13): 5272–5280. doi: 10.1007/s10853-006-0387-y
|
[2] |
ZHAO P D, LU F Y, LIN Y L, et al. Technique for combined dynamic compression-shear testing of PBXs [J]. Experimental Mechanics, 2012, 52(2): 205–213. doi: 10.1007/s11340-011-9534-8
|
[3] |
ZHU W, XIAO J J, ZHU W H, et al. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives [J]. Journal of Hazardous Materials, 2009, 164(2/3): 1082–1088. doi: 10.1016/j.jhazmat.2008.09.021
|
[4] |
LONG Y, CHEN J. A molecular dynamics study of the early-time mechanical heating in shock-loaded octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine-based explosives [J]. Journal of Applied Physics, 2014, 116(3): 033516. doi: 10.1063/1.4890715
|
[5] |
AN Q, ZYBIN S V, GODDARD W A, et al. Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials [J]. Physical Review B, 2011, 84(22): 220101. doi: 10.1103/PhysRevB.84.220101
|
[6] |
YEAGER J D, RAMOS K J, SINGH S, et al. Nanoindentation of explosive polymer composites to simulate deformation and failure [J]. Materials Science and Technology, 2012, 28(9/10): 1147–1155. doi: 10.1179/1743284712Y.0000000011
|
[7] |
RAE P J, GOLDREIN H T, PALMER S J P, et al. Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458: 743–762. doi: 10.1098/rspa.2001.0894
|
[8] |
XIAO Y C, SUN Y, WANG Z J. Investigating the static and dynamic tensile mechanical behaviour of polymer-bonded explosives [J]. Strain, 2018, 54(2): e12262. doi: 10.1111/str.12262
|
[9] |
WANG X J, WU Y Q, HUANG F L. Numerical mesoscopic investigations of dynamic damage and failure mechanisms of polymer bonded explosives [J]. International Journal of Solids and Structures, 2017, 129: 28–39. doi: 10.1016/j.ijsolstr.2017.09.017
|
[10] |
DAI K D, LU B D, CHEN P W, et al. Modelling microstructural deformation and the failure process of plastic bonded explosives using the cohesive zone model [J]. Materials, 2019, 12(22): 3661. doi: 10.3390/ma12223661
|
[11] |
FU X L, FAN X Z, JU X H, et al. Molecular dynamic simulations on the interaction between an HTPE polymer and energetic plasticizers in a solid propellant [J]. RSC Advances, 2015, 5(65): 52844–52851. doi: 10.1039/C5RA05312A
|
[12] |
SHI Y B, GONG J, HU X Y, et al. Comparative investigation on the thermostability, sensitivity, and mechanical performance of RDX/HMX energetic cocrystal and its mixture [J]. Journal of Molecular Modeling, 2020, 26(7): 176. doi: 10.1007/s00894-020-04426-0
|
[13] |
FU J B, WANG B G, CHEN Y F, et al. Computational analysis the relationships of energy and mechanical properties with sensitivity for FOX-7 based PBXs via MD simulation [J]. Royal Society Open Science, 2021, 8(2): 200345. doi: 10.1098/rsos.200345
|
[14] |
YU C, YANG L, CHEN H Y, et al. Microscale investigations of mechanical responses of TKX-50 based polymer bonded explosives using MD simulations [J]. Computational Materials Science, 2020, 172: 109287. doi: 10.1016/j.commatsci.2019.109287
|
[15] |
XIAO J J, HUANG H, LI J S, et al. A molecular dynamics study of interface interactions and mechanical properties of HMX-based PBXs with PEG and HTPB [J]. Journal of Molecular Structure: Theochem, 2008, 851(1): 242–248. doi: 10.1016/j.theochem.2007.11.021
|
[16] |
XIAO J J, HUANG H, LI J S, et al. Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation [J]. Journal of Materials Science, 2008, 43(17): 5685–5691. doi: 10.1007/s10853-008-2704-0
|
[17] |
XIAO J J, FANG G Y, JI G F, et al. Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives [J]. Chinese Science Bulletin, 2005, 50(1): 21–26. doi: 10.1360/982004-147
|
[18] |
WANG L Y, ZHONG K, MA J, et al. Learning the initial mechanical response of composite material: structure evolution and energy profile of a plastic bonded explosive under rapid loading [J]. Journal of Molecular Modeling, 2019, 25(2): 31. doi: 10.1007/s00894-018-3913-3
|
[19] |
LV L, YANG M L, LONG Y, et al. Molecular dynamics simulation of structural and mechanical features of a polymer-bonded explosive interface under tensile deformation [J]. Applied Surface Science, 2021, 557: 149823. doi: 10.1016/j.apsusc.2021.149823
|
[20] |
SMITH G D, BHARADWAJ R K. Quantum chemistry based force field for simulations of HMX [J]. The Journal of Physical Chemistry B, 1999, 103(18): 3570–3575. doi: 10.1021/jp984599p
|
[21] |
BEDROV D, AYYAGARI C, SMITH G D, et al. Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field [J]. Journal of Computer: Aided Materials Design, 2001, 8(2/3): 77–85. doi: 10.1023/A:1020046817543
|
[22] |
BEDROV D, BORODIN O, SMITH G D, et al. A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6-trinitrobenzene as a function of pressure and temperature [J]. The Journal of Chemical Physics, 2009, 131(22): 224703. doi: 10.1063/1.3264972
|
[23] |
SUN H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338–7364. doi: 10.1021/jp980939v
|
[24] |
BUNTE S W, SUN H. Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field [J]. The Journal of Physical Chemistry B, 2000, 104(11): 2477–2489. doi: 10.1021/jp991786u
|
[25] |
LONG Y, LIU Y G, NIE F D, et al. The force-field derivation and atomistic simulation of HMX-fluoropolymer mixture explosives [J]. Colloid and Polymer Science, 2012, 290(18): 1855–1866. doi: 10.1007/s00396-012-2705-z
|