拉伸加载下PBX炸药力学性能的分子动力学模拟

高飞艳 刘睿 陈鹏万 龙瑶 陈军

高飞艳, 刘睿, 陈鹏万, 龙瑶, 陈军. 拉伸加载下PBX炸药力学性能的分子动力学模拟[J]. 高压物理学报, 2022, 36(4): 044201. doi: 10.11858/gywlxb.20220521
引用本文: 高飞艳, 刘睿, 陈鹏万, 龙瑶, 陈军. 拉伸加载下PBX炸药力学性能的分子动力学模拟[J]. 高压物理学报, 2022, 36(4): 044201. doi: 10.11858/gywlxb.20220521
GAO Feiyan, LIU Rui, CHEN Pengwan, LONG Yao, CHEN Jun. Molecular Dynamics Simulation of Mechanical Properties of Polymer Bonded Explosive under Tension Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044201. doi: 10.11858/gywlxb.20220521
Citation: GAO Feiyan, LIU Rui, CHEN Pengwan, LONG Yao, CHEN Jun. Molecular Dynamics Simulation of Mechanical Properties of Polymer Bonded Explosive under Tension Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044201. doi: 10.11858/gywlxb.20220521

拉伸加载下PBX炸药力学性能的分子动力学模拟

doi: 10.11858/gywlxb.20220521
基金项目: 国家自然科学基金(U1730244)
详细信息
    作者简介:

    高飞艳(1998—),女,硕士研究生,主要从事计算物理研究. E-mail:3120190129@bit.edu.cn

    通讯作者:

    陈鹏万(1971—),男,博士,教授,主要从事含能材料研究. E-mail:pwchen@bit.edu.cn

    陈 军(1969—),男,博士,研究员,主要从事计算物理研究. E-mail:jun_chen@iapcm.ac.cn

  • 中图分类号: O521.2; O347

Molecular Dynamics Simulation of Mechanical Properties of Polymer Bonded Explosive under Tension Loading

  • 摘要: 采用分子动力学方法研究了拉伸加载下HMX基PBX界面力学行为的应变率依赖性。模拟结果显示,PBX的拉伸强度和弹性模量随着应变率的增加而增大。HMX-F2311的断裂方式与应变率相关:初始应变主要集中于黏结剂F2311,在低应变率下形成了一条大致垂直于加载方向的主裂纹;随着拉伸应变率的增加,破坏路径将分布在整个模型上;PBX的断裂失效是由于黏结剂F2311的脱粘。在单轴拉伸加载过程中,HMX-F2311的势能随拉伸应变率的增加而迅速增大,尤其在高应变率拉伸加载下,范德华力相互作用对势能的演变起到了决定性作用。分子动力学模拟揭示了应变率对HMX-F2311界面微观结构、力学行为和断裂损伤机制的影响,对PBX的设计、制备和安全使用具有重要意义。

     

  • 图  HMX-F2311界面的初始模型(a)以及优化后HMX-F2311界面的稳定结构(b)

    Figure  1.  Initial model of HMX-F2311 interface (a) and the stable structure of HMX-F2311 interface after optimization (b)

    图  优化过程中压力和能量随时间的变化

    Figure  2.  Pressure and energy fluctuations vs. time during optimization

    图  HMX-F2311在不同应变率下的应力-应变曲线 (a)以及拉伸强度 (b) 和弹性模量 (c) 与对数应变率的关系

    Figure  3.  (a) Stress-strain curves of HMX-F2311 under different tension loading; (b) tension strength vs. logarithmic strain rate; (c) elastic modulus vs. logarithmic strain rate

    图  不同拉伸加载应变率下HMX-F2311界面在x方向的应变分布

    Figure  4.  Distribution of strain field in the x direction of HMX-F2311 interface under different tension strain rates

    图  不同拉伸应变率下HMX-F2311界面在x方向的应变分布

    Figure  5.  Distribution of strain field in the x direction of HMX-F2311 interface under different tension strain rates

    图  不同应变率下总势能随应变的变化

    Figure  6.  Variations of potential energy with stain under different strain rates

    图  不同应变率下各个势能分项随应变的变化

    Figure  7.  Variations of each energy sub-item of potential energy with strain under different strain rates

  • [1] CHEN P W, HUANG F L, DING Y S. Microstructure, deformation and failure of polymer bonded explosives [J]. Journal of Materials Science, 2007, 42(13): 5272–5280. doi: 10.1007/s10853-006-0387-y
    [2] ZHAO P D, LU F Y, LIN Y L, et al. Technique for combined dynamic compression-shear testing of PBXs [J]. Experimental Mechanics, 2012, 52(2): 205–213. doi: 10.1007/s11340-011-9534-8
    [3] ZHU W, XIAO J J, ZHU W H, et al. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives [J]. Journal of Hazardous Materials, 2009, 164(2/3): 1082–1088. doi: 10.1016/j.jhazmat.2008.09.021
    [4] LONG Y, CHEN J. A molecular dynamics study of the early-time mechanical heating in shock-loaded octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine-based explosives [J]. Journal of Applied Physics, 2014, 116(3): 033516. doi: 10.1063/1.4890715
    [5] AN Q, ZYBIN S V, GODDARD W A, et al. Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials [J]. Physical Review B, 2011, 84(22): 220101. doi: 10.1103/PhysRevB.84.220101
    [6] YEAGER J D, RAMOS K J, SINGH S, et al. Nanoindentation of explosive polymer composites to simulate deformation and failure [J]. Materials Science and Technology, 2012, 28(9/10): 1147–1155. doi: 10.1179/1743284712Y.0000000011
    [7] RAE P J, GOLDREIN H T, PALMER S J P, et al. Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458: 743–762. doi: 10.1098/rspa.2001.0894
    [8] XIAO Y C, SUN Y, WANG Z J. Investigating the static and dynamic tensile mechanical behaviour of polymer-bonded explosives [J]. Strain, 2018, 54(2): e12262. doi: 10.1111/str.12262
    [9] WANG X J, WU Y Q, HUANG F L. Numerical mesoscopic investigations of dynamic damage and failure mechanisms of polymer bonded explosives [J]. International Journal of Solids and Structures, 2017, 129: 28–39. doi: 10.1016/j.ijsolstr.2017.09.017
    [10] DAI K D, LU B D, CHEN P W, et al. Modelling microstructural deformation and the failure process of plastic bonded explosives using the cohesive zone model [J]. Materials, 2019, 12(22): 3661. doi: 10.3390/ma12223661
    [11] FU X L, FAN X Z, JU X H, et al. Molecular dynamic simulations on the interaction between an HTPE polymer and energetic plasticizers in a solid propellant [J]. RSC Advances, 2015, 5(65): 52844–52851. doi: 10.1039/C5RA05312A
    [12] SHI Y B, GONG J, HU X Y, et al. Comparative investigation on the thermostability, sensitivity, and mechanical performance of RDX/HMX energetic cocrystal and its mixture [J]. Journal of Molecular Modeling, 2020, 26(7): 176. doi: 10.1007/s00894-020-04426-0
    [13] FU J B, WANG B G, CHEN Y F, et al. Computational analysis the relationships of energy and mechanical properties with sensitivity for FOX-7 based PBXs via MD simulation [J]. Royal Society Open Science, 2021, 8(2): 200345. doi: 10.1098/rsos.200345
    [14] YU C, YANG L, CHEN H Y, et al. Microscale investigations of mechanical responses of TKX-50 based polymer bonded explosives using MD simulations [J]. Computational Materials Science, 2020, 172: 109287. doi: 10.1016/j.commatsci.2019.109287
    [15] XIAO J J, HUANG H, LI J S, et al. A molecular dynamics study of interface interactions and mechanical properties of HMX-based PBXs with PEG and HTPB [J]. Journal of Molecular Structure: Theochem, 2008, 851(1): 242–248. doi: 10.1016/j.theochem.2007.11.021
    [16] XIAO J J, HUANG H, LI J S, et al. Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation [J]. Journal of Materials Science, 2008, 43(17): 5685–5691. doi: 10.1007/s10853-008-2704-0
    [17] XIAO J J, FANG G Y, JI G F, et al. Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives [J]. Chinese Science Bulletin, 2005, 50(1): 21–26. doi: 10.1360/982004-147
    [18] WANG L Y, ZHONG K, MA J, et al. Learning the initial mechanical response of composite material: structure evolution and energy profile of a plastic bonded explosive under rapid loading [J]. Journal of Molecular Modeling, 2019, 25(2): 31. doi: 10.1007/s00894-018-3913-3
    [19] LV L, YANG M L, LONG Y, et al. Molecular dynamics simulation of structural and mechanical features of a polymer-bonded explosive interface under tensile deformation [J]. Applied Surface Science, 2021, 557: 149823. doi: 10.1016/j.apsusc.2021.149823
    [20] SMITH G D, BHARADWAJ R K. Quantum chemistry based force field for simulations of HMX [J]. The Journal of Physical Chemistry B, 1999, 103(18): 3570–3575. doi: 10.1021/jp984599p
    [21] BEDROV D, AYYAGARI C, SMITH G D, et al. Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field [J]. Journal of Computer: Aided Materials Design, 2001, 8(2/3): 77–85. doi: 10.1023/A:1020046817543
    [22] BEDROV D, BORODIN O, SMITH G D, et al. A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6-trinitrobenzene as a function of pressure and temperature [J]. The Journal of Chemical Physics, 2009, 131(22): 224703. doi: 10.1063/1.3264972
    [23] SUN H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338–7364. doi: 10.1021/jp980939v
    [24] BUNTE S W, SUN H. Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field [J]. The Journal of Physical Chemistry B, 2000, 104(11): 2477–2489. doi: 10.1021/jp991786u
    [25] LONG Y, LIU Y G, NIE F D, et al. The force-field derivation and atomistic simulation of HMX-fluoropolymer mixture explosives [J]. Colloid and Polymer Science, 2012, 290(18): 1855–1866. doi: 10.1007/s00396-012-2705-z
  • 加载中
图(8)
计量
  • 文章访问数:  1209
  • HTML全文浏览量:  587
  • PDF下载量:  56
出版历程
  • 收稿日期:  2022-02-25
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回