Advances of High-Temperature and High-Pressure Physical Properties and Experimental Technology on High-Energy Insensitive Explosive TATB
-
摘要: 1, 3, 5-三氨基-2, 4, 6-三硝基苯(TATB)作为典型的高能钝感炸药之一,在民用、军工等领域具有重要的研究价值。基于科学挑战专题,分别从实验技术和实验成果两方面详细概述了极端条件下TATB的物性研究进展,系统介绍了课题组自主设计和搭建的光谱测试系统和高温高压仪器装置,以及TATB在高压下的光吸收和结构演化规律。另外,还对低温环境下炸药的结构稳定性、高温环境下炸药的热稳定性以及压力参量对样品化学分解进程和热分解机制的影响进行了阐述和讨论。Abstract: TATB (1, 3, 5-triamino-2, 4, 6-trinitrobenzene), as one of the typical high-energy insensitive explosives, has important research value in national defense and military applications. Based on the Science Challenging Program (SCP), this work provides a detailed overview of the research progress on physical properties of TATB under extreme conditions in terms of experimental technology and experimental results. This paper systematically introduced the spectral test system and some instruments about high temperature and high pressure independently designed and built by our research group, and studied the light absorption and the structural evolution on TATB under high pressure. Additionally, the structural stability of explosives under low temperature and thermal stability of explosives under high temperature and the effect of pressure on the chemical decomposition process and thermal decomposition mechanism of the sample were elaborated and discussed.
-
图 1 TATB的分子结构(a)、晶胞结构(b)和二维氢键网络结构(c–d)(金色球为C原子,蓝色球为N原子,红色球为氧原子,粉色球为H原子)
Figure 1. The molecular structure (a), crystal cell structure (b) and two-dimensional hydrogen bond network structure (c–d) of TATB (The golden balls represent C atoms, the blue balls represent N atoms, the red balls represent oxygen atoms and the pink balls represent H atoms.)
-
[1] SHEN J P, DUAN X H, LUO Q P, et al. Preparation and characterization of a novel cocrystal explosive [J]. Crystal Growth & Design, 2011, 11(5): 1759–1765. doi: 10.1021/cg1017032 [2] 焦越. 高能氮杂化合物结构与性质的理论研究 [D]. 南京: 南京理工大学, 2018.JIAO Y. Theoretic studies of the structures and properties of energetic nitrogen-contained compounds [D]. Nanjing: Nanjing University of Science and Technology, 2018. [3] BOLTON O, MATZGER A J. Improved stability and smart-material functionality realized in an energetic cocrystal [J]. Angewandte Chemie International Edition, 2011, 50(38): 8960–8963. doi: 10.1002/anie.201104164 [4] 舒远杰, 武宗凯, 刘宁, 等. 晶形控制及形成共晶: 含能材料改性研究的重要途径 [J]. 火炸药学报, 2015, 38(5): 1–9. doi: 10.14077/j.issn.1007-7812.2015.05.001SHU Y J, WU Z K, LIU N, et al. Crystal control and cocrystal formation: important route of modification research of energetic materials [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 1–9. doi: 10.14077/j.issn.1007-7812.2015.05.001 [5] BEDROV D, BORODIN O, SMITH G D, et al. A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6-trinitrobenzene as a function of pressure and temperature [J]. The Journal of Chemical Physics, 2009, 131(22): 224703. doi: 10.1063/1.3264972 [6] FEDOROV I A, ZHURAVLEV Y N. Hydrostatic pressure effects on structural and electronic properties of TATB from first principles calculations [J]. Chemical Physics, 2014, 436/437: 1–7. doi: 10.1016/j.chemphys.2014.03.013 [7] 朱磊. TATB及TATB类炸药分子的电子结构及性能研究 [D]. 武汉: 武汉理工大学, 2005.ZHU L. Study on electronic structures and properties of explosive molecules of TATB series [D]. Wuhan: Wuhan University of Technology, 2005. [8] WANG J, WANG Y Q, QIAO Z Q, et al. Self-assembly of TATB 3D architectures via micro-channel crystallization and a formation mechanism [J]. CrystEngComm, 2016, 18(11): 1953–1957. doi: 10.1039/C5CE02436F [9] NANDI A K, KASAR S M, THANIGAIVELAN U, et al. Formation of the sensitive impurity 1, 3, 5-triamino-2-chloro-4, 6-dinitrobenzene in pilot plant TATB production [J]. Organic Process Research & Development, 2012, 16(12): 2036–2042. doi: 10.1021/op300213s [10] 高大元, 徐容, 董海山, 等. TATB、TCTNB和TCDNB的爆轰性能 [J]. 火炸药学报, 2005, 28(2): 68–71. doi: 10.3969/j.issn.1007-7812.2005.02.021GAO D Y, XU R, DONG H S, et al. Detonation performance of TATB, TCTNB and TCDNB [J]. Chinese Journal of Explosives & Propellants, 2005, 28(2): 68–71. doi: 10.3969/j.issn.1007-7812.2005.02.021 [11] BADGUJAR D M, TALAWAR M B, ASTHANA S N, et al. Advances in science and technology of modern energetic materials: an overview [J]. Journal of Hazardous Materials, 2008, 151(2/3): 289–305. doi: 10.1016/j.jhazmat.2007.10.039 [12] 黄亚峰, 王晓峰, 冯晓军, 等. 高温耐热炸药的研究现状与发展 [J]. 爆破器材, 2012, 41(6): 1–4. doi: 10.3969/j.issn.1001-8352.2012.06.001HUANG Y F, WANG X F, FENG X J, et al. Preset research and perspective of the high-temperature heat-resistance explosive [J]. Explosive Materials, 2012, 41(6): 1–4. doi: 10.3969/j.issn.1001-8352.2012.06.001 [13] STEELE B A, CLARKE S M, KROONBLAWD M P, et al. Pressure-induced phase transition in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) [J]. Applied Physics Letters, 2019, 114(19): 191901. doi: 10.1063/1.5091947 [14] BODDU V M, VISWANATH D S, GHOSH T K, et al. 2, 4, 6-triamino-1, 3, 5-trinitrobenzene (TATB) and TATB-based formulations: a review [J]. Journal of Hazardous Materials, 2010, 181(1): 1–8. doi: 10.1016/j.jhazmat.2010.04.120 [15] MANAA M R, FRIED L E. Nearly equivalent inter- and intramolecular hydrogen bonding in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene at high pressure [J]. The Journal of Physical Chemistry C, 2012, 116(3): 2116–2122. doi: 10.1021/jp205920n [16] KOHNO Y, MORI K, HIYOSHI R I, et al. Molecular dynamics and first-principles studies of structural change in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) in crystalline state under high pressure: comparison of hydrogen bond systems of TATB versus 1, 3-diamino-2, 4, 6-trinitrobenzene (DATB) [J]. Chemical Physics, 2016, 472: 163–172. doi: 10.1016/j.chemphys.2016.04.002 [17] DAVID STEPHEN A, SRINIVASAN P, KUMARADHAS P. Bond charge depletion, bond strength and the impact sensitivity of high energetic 1, 3, 5-triamino 2, 4, 6-trinitrobenzene (TATB) molecule: a theoretical charge density analysis [J]. Computational and Theoretical Chemistry, 2011, 967(2/3): 250–256. doi: 10.1016/j.comptc.2011.04.026 [18] LIU H, ZHAO J J, DU J G, et al. High-pressure behavior of TATB crystal by density functional theory [J]. Physics Letters A, 2007, 367(4/5): 383–388. doi: 10.1016/j.physleta.2007.03.048 [19] FAN H, LONG Y, DING L, et al. A theoretical study of elastic anisotropy and thermal conductivity for TATB under pressure [J]. Computational Materials Science, 2017, 131: 321–332. doi: 10.1016/j.commatsci.2017.01.020 [20] QIAN W, ZHANG C Y, XIONG Y, et al. Thermal expansion of explosive molecular crystals: anisotropy and molecular stacking [J]. Central European Journal of Energetic Materials, 2014, 11(1): 59–81. [21] GUO F, ZHANG H, HU H Q, et al. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures [J]. Chinese Physics B, 2014, 23(4): 046501. doi: 10.1088/1674-1056/23/4/046501 [22] SU Y, FAN J Y, ZHENG Z Y, et al. Compression behavior and spectroscopic properties of insensitive explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene from dispersion-corrected density functional theory [J]. Chinese Physics B, 2018, 27(5): 056401. doi: 10.1088/1674-1056/27/5/056401 [23] GUMP J C. High-pressure and temperature investigations of energetic materials [J]. Journal of Physics: Conference Series, 2014, 500(5): 052014. doi: 10.1088/1742-6596/500/5/052014 [24] GAO C, ZHANG X Y, ZHANG C C, et al. Effect of pressure gradient and new phases for 1, 3, 5-trinitrohexahydro-s-triazine (RDX) under high pressures [J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14374–14383. doi: 10.1039/C8CP01192C [25] MANAA M R, SCHMIDT R D, OVERTURF G E, et al. Towards unraveling the photochemistry of TATB [J]. Thermochimica Acta, 2002, 384(1/2): 85–90. doi: 10.1016/S0040-6031(01)00779-1 [26] DAVIDSON A J, DIAS R P, DATTELBAUM D M, et al. “Stubborn” triaminotrinitrobenzene: unusually high chemical stability of a molecular solid to 150 GPa [J]. The Journal of Chemical Physics, 2011, 135(17): 174507. doi: 10.1063/1.3658385 [27] STEVENS L L, VELISAVLJEVIC N, HOOKS D E, et al. Hydrostatic compression curve for triamino-trinitrobenzene determined to 13.0 GPa with powder X-ray diffraction [J]. Propellants, Explosives, Pyrotechnics, 2008, 33(4): 286–295. doi: 10.1002/prep.200700270 [28] TROTT W M, RENLUND A M. Single-pulse Raman scattering study of triaminotrinitrobenzene under shock compression [J]. The Journal of Physical Chemistry, 1988, 92(21): 5921–5925. doi: 10.1021/j100332a015 [29] SATIJA S K, SWANSON B, ECKERT J, et al. High-pressure Raman scattering and inelastic neutron scattering studies of triaminotrinitrobenzene [J]. The Journal of Physical Chemistry, 1991, 95(24): 10103–10109. doi: 10.1021/j100177a088 [30] PRAVICA M, YULGA B, LIU Z X, et al. Infrared study of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure [J]. Physical Review B, 2007, 76(6): 064102. doi: 10.1103/PhysRevB.76.064102 [31] PRAVICA M, YULGA B, TKACHEV S, et al. High-pressure far- and mid-infrared study of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene [J]. The Journal of Physical Chemistry A, 2009, 113(32): 9133–9137. doi: 10.1021/jp903584x [32] KAKAR S, NELSON A J, TREUSCH R, et al. Electronic structure of the energetic material 1, 3, 5-triamino-2, 4, 6-trinitrobenzene [J]. Physical Review B, 2000, 62(23): 15666–15672. doi: 10.1103/PhysRevB.62.15666 [33] OJEDA O U, ÇAĞIN T. Hydrogen bonding and molecular rearrangement in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under compression [J]. The Journal of Physical Chemistry B, 2011, 115(42): 12085–12093. doi: 10.1021/jp2007649 [34] LIU Y J, ZENG Q X, ZOU B, et al. Piezochromic luminescence of donor-acceptor cocrystals: distinct responses to anisotropic grinding and isotropic compression [J]. Angewandte Chemie International Edition, 2018, 57(48): 15670–15674. doi: 10.1002/anie.201810149 [35] XU X J, ZHU W H, XIAO H M. DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal [J]. The Journal of Physical Chemistry B, 2007, 111(8): 2090–2097. doi: 10.1021/jp066833e [36] SUN X Y, WANG X Q, LIANG W T, et al. Pressure-induced conformer modifications and electronic structural changes in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) up to 20 GPa [J]. The Journal of Physical Chemistry C, 2018, 122(28): 15861–15867. doi: 10.1021/acs.jpcc.8b03323 [37] 高大元, 徐容, 董海山, 等. TATB及其杂质的绝热分解研究 [J]. 爆炸与冲击, 2004, 24(1): 69–74. doi: 10.3321/j.issn:1001-1455.2004.01.012GAO D Y, XU R, DONG H S, et al. Study on thermal decomposition of TATB and its impurity by accelerating rate calorimeter [J]. Explosion and Shock Waves, 2004, 24(1): 69–74. doi: 10.3321/j.issn:1001-1455.2004.01.012 [38] 王君, 郭峰, 程新路, 等. TATB高温高压下初始分解反应的分子动力学模拟 [J]. 四川大学学报 (自然科学版), 2013, 50(3): 580–584. doi: 10.3969/j.issn.0490-6756.2013.03.030WANG J, GUO F, CHENG X L, et al. Reactive molecular dynamics simulations of initial decomposition of TATB under high temperature and high pressure [J]. Journal of Sichuan University (Natural Science Edition), 2013, 50(3): 580–584. doi: 10.3969/j.issn.0490-6756.2013.03.030 [39] WU Q, CHEN H, XIONG G L, et al. Decomposition of a 1, 3, 5-triamino-2, 4, 6-trinitrobenzene crystal at decomposition temperature coupled with different pressures: an ab initio molecular dynamics study [J]. The Journal of Physical Chemistry C, 2015, 119(29): 16500–16506. doi: 10.1021/acs.jpcc.5b05041 [40] WANG J K, GAO C, XU Z L, et al. Pressure effects on the thermal decomposition of the LLM-105 crystal [J]. Physical Chemistry Chemical Physics, 2022, 24(4): 2396–2402. doi: 10.1039/D1CP04076F