冲击载荷下正弦波纹夹芯圆柱壳的轴向压缩和吸能特性

郝孝恒 张天辉 王根伟 沈文豪 闫栋 沙风焕

郝孝恒, 张天辉, 王根伟, 沈文豪, 闫栋, 沙风焕. 冲击载荷下正弦波纹夹芯圆柱壳的轴向压缩和吸能特性[J]. 高压物理学报, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518
引用本文: 郝孝恒, 张天辉, 王根伟, 沈文豪, 闫栋, 沙风焕. 冲击载荷下正弦波纹夹芯圆柱壳的轴向压缩和吸能特性[J]. 高压物理学报, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518
HAO Xiaoheng, ZHANG Tianhui, WANG Genwei, SHEN Wenhao, YAN Dong, SHA Fenghuan. Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518
Citation: HAO Xiaoheng, ZHANG Tianhui, WANG Genwei, SHEN Wenhao, YAN Dong, SHA Fenghuan. Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518

冲击载荷下正弦波纹夹芯圆柱壳的轴向压缩和吸能特性

doi: 10.11858/gywlxb.20220518
基金项目: 国家自然科学基金(11872265);山西省自然科学基金(201901D111087)
详细信息
    作者简介:

    郝孝恒(1997-),男,硕士研究生,主要从事金属夹芯结构的吸能和变形研究.E-mail:15222578257@163.com

    通讯作者:

    王根伟(1974-),男,博士,副教授,主要从事冲击动力学研究. E-mail:gwang@tyut.edu.cn

  • 中图分类号: O341; O521.2

Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading

  • 摘要: 薄壁夹芯结构因其优异的吸能和轻量化特性被广泛应用于防护结构中。正弦波纹夹芯圆柱壳的制备工艺简单,在工程上应用广泛,研究其在冲击载荷下的轴向变形行为和吸能特性具有重要意义。基于准静态轴向压缩实验,对正弦形波纹夹芯圆柱壳的轴向准静态压缩进行了有限元模拟,模拟结果与实验结果吻合较好。在此基础上,探讨了夹芯圆柱壳芯层厚度A和正弦波周期数N对冲击载荷作用下夹芯圆柱壳的压溃模式和能量吸收特性的影响。结果表明,合理配置AN能够有效地提高比吸能,实现较理想的吸能变形模式。在准静态压缩下,结构参数为A3N12的夹芯圆柱壳具有最好的比吸能,为轴对称变形。在冲击载荷作用下,发生非轴对称变形模式的A7N12具有最好的比吸能和最高的平均压缩力效率。

     

  • 图  正弦波纹圆柱结构示意图

    Figure  1.  Schematic diagram of a sinusoidal corrugated cylinder

    图  不同AN的夹芯圆柱壳

    Figure  2.  Sandwich cylindrical shells with different A and N

    图  Al 6061-O的工程应力-应变曲线

    Figure  3.  Engineering stress-strain curves of Al 6061-O

    图  正弦波纹圆柱壳结构的有限元模型

    Figure  4.  Finite element model of sinusoidal corrugated cylindrical shells

    图  压缩载荷-位移曲线的模拟与实验结果对比

    Figure  5.  Comparison of compressive force-displacement curves between simulation and experiment

    图  网格敏感性分析

    Figure  6.  Mesh sensitivity analysis

    图  动能与应变能的对比

    Figure  7.  Comparison of kinetic energy and internal energy

    图  典型的轴对称、非轴对称和混合变形模式

    Figure  8.  Representative deformation of axisymmetric, non-axisymmetric and mixed modes

    图  不同的AN下壳体的变形模式

    Figure  9.  Collapse modes of shells with various A and N

    图  10  不同的AN下试件的质量

    Figure  10.  Mass of specimens with different A and N

    图  11  不同的AN下夹芯圆柱壳能量吸收的模拟结果

    Figure  11.  Numerical results of the energy absorption of sandwich cylinder shells with different A and N

    图  12  N=4时内外壳和夹芯的比吸能

    Figure  12.  Specific energy absorption of inner and outer shells and sandwich with N=4

    图  13  不同的AN下夹芯圆柱壳的比吸能和变形模式

    Figure  13.  Specific energy absorption and deformation modes of sandwich cylindrical shells with different A and N

    图  14  不同冲击速度下夹芯圆柱壳的变形模式

    Figure  14.  Deformation patterns of sandwich cylindrical shells impacted at different impact velocities

    表  1  不同冲击速度下结构的能量吸收对比

    Table  1.   Comparison of energy absorption of structures at different impact velocities

    v/(m·s−1)StructureSEA/(J·g−1)PCF/kNCFE
    10A7N1036.9264.590.57
    A7N1238.0367.930.56
    A3N1028.2560.690.46
    A3N1230.9562.570.49
    20A7N1038.3163.410.61
    A7N1239.7467.020.56
    A3N1028.2761.190.46
    A3N1234.8261.910.56
    30A7N1041.2469.340.59
    A7N1241.3170.040.58
    A3N1032.1567.160.48
    A3N1237.4675.010.50
    下载: 导出CSV
  • [1] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. doi: 10.1016/S0020-7403(01)00031-5
    [2] 朱文波, 杨黎明, 余同希. 薄壁圆管轴向冲击下的动态特性研究 [J]. 宁波大学学报(理工版), 2014, 27(2): 92–96.

    ZHU W B, YANG L M, YU T X. Study on dynamic properties of thin-walled circular tubes under axial compression [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2014, 27(2): 92–96.
    [3] JANDAGHI SHAHI V, MARZBANRAD J. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes [J]. Thin-Walled Structures, 2012, 60: 24–37. doi: 10.1016/j.tws.2012.05.015
    [4] SADIGHI A, EYVAZIAN A, ASGARI M, et al. A novel axially half corrugated thin-walled tube for energy absorption under axial loading [J]. Thin-Walled Structures, 2019, 145: 106418. doi: 10.1016/j.tws.2019.106418
    [5] YAO S G, ZHU H F, LIU M Y, et al. Energy absorption of origami tubes with polygonal cross-sections [J]. Thin-Walled Structures, 2020, 157: 107013. doi: 10.1016/j.tws.2020.107013
    [6] ZHU G H, LIAO J P, SUN G Y, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading [J]. International Journal of Impact Engineering, 2020, 141: 103509. doi: 10.1016/j.ijimpeng.2020.103509
    [7] HOU Y B, ZHANG Y, YAN X L, et al. Crushing behaviors of the thin-walled sandwich column under axial load [J]. Thin-Walled Structures, 2021, 159: 107229. doi: 10.1016/j.tws.2020.107229
    [8] WU S Y, SUN G Y, WU X, et al. Crashworthiness analysis and optimization of fourier varying section tubes [J]. International Journal of Non-Linear Mechanics, 2017, 92: 41–58. doi: 10.1016/j.ijnonlinmec.2017.03.001
    [9] FU J, LIU Q, LIUFU K M, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
    [10] 侯淑娟. 薄壁构件的抗撞性优化设计 [D]. 长沙: 湖南大学, 2007: 44−57.

    HOU S J. Optimization design of the thin-walled components with crashworthiness criterion [D]. Changsha: Hunan University, 2007: 44−57.
    [11] 闫栋, 王根伟, 宋辉, 等. 类向日葵夹芯圆柱壳径向冲击数值模拟 [J]. 高压物理学报, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858

    YAN D, WANG G W, SONG H, et al. Numerical simulation of radial impact on sunflower-like sandwich cylindrical shell [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
    [12] 白江畔, 张新春, 沈振峰, 等. 冲击载荷下多胞元薄壁结构的动态压溃行为研究 [J]. 振动与冲击, 2020, 39(18): 145–152. doi: 10.13465/j.cnki.jvs.2020.18.019

    BAI J P, ZHANG X C, SHEN Z F, et al. Dynamic crushing behaviors of multi-cell thin-walled structures under out-of-plane impact [J]. Journal of Vibration and Shock, 2020, 39(18): 145–152. doi: 10.13465/j.cnki.jvs.2020.18.019
    [13] MOHAMED A S, LABAN O, TARLOCHAN F, et al. Experimental analysis of additively manufactured thin-walled heat-treated circular tubes with slits using AlSi10Mg alloy by quasi-static axial crushing test [J]. Thin-Walled Structures, 2019, 138: 404–414. doi: 10.1016/j.tws.2019.02.022
    [14] 杨帆, 王鹏, 范华林, 等. 薄壁管状吸能结构的吸能性能及变形模式的理论研究进展 [J]. 力学季刊, 2018, 39(4): 663–680. doi: 10.15959/j.cnki.0254-0053.2018.04.001

    YANG F, WANG P, FAN H L, et al. Review of theoretical models on the energy absorption and deformation modes of the thin-walled tubular structures [J]. Chinese Quarterly of Mechanics, 2018, 39(4): 663–680. doi: 10.15959/j.cnki.0254-0053.2018.04.001
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  149
  • PDF下载量:  37
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-03-26
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回