冲击载荷下正弦波纹夹芯圆柱壳的轴向压缩和吸能特性

郝孝恒 张天辉 王根伟 沈文豪 闫栋 沙风焕

任玉铎, 张洋, 罗坤. 商业纯钛自加热高压热处理的力学性能[J]. 高压物理学报, 2020, 34(5): 051302. doi: 10.11858/gywlxb.20190846
引用本文: 郝孝恒, 张天辉, 王根伟, 沈文豪, 闫栋, 沙风焕. 冲击载荷下正弦波纹夹芯圆柱壳的轴向压缩和吸能特性[J]. 高压物理学报, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518
REN Yuduo, ZHANG Yang, LUO Kun. Properties of Commercial Pure Titanium under Self-Heating and High-Pressure Heating Treatment[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051302. doi: 10.11858/gywlxb.20190846
Citation: HAO Xiaoheng, ZHANG Tianhui, WANG Genwei, SHEN Wenhao, YAN Dong, SHA Fenghuan. Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518

冲击载荷下正弦波纹夹芯圆柱壳的轴向压缩和吸能特性

doi: 10.11858/gywlxb.20220518
基金项目: 国家自然科学基金(11872265);山西省自然科学基金(201901D111087)
详细信息
    作者简介:

    郝孝恒(1997-),男,硕士研究生,主要从事金属夹芯结构的吸能和变形研究.E-mail:15222578257@163.com

    通讯作者:

    王根伟(1974-),男,博士,副教授,主要从事冲击动力学研究. E-mail:gwang@tyut.edu.cn

  • 中图分类号: O341; O521.2

Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading

  • 摘要: 薄壁夹芯结构因其优异的吸能和轻量化特性被广泛应用于防护结构中。正弦波纹夹芯圆柱壳的制备工艺简单,在工程上应用广泛,研究其在冲击载荷下的轴向变形行为和吸能特性具有重要意义。基于准静态轴向压缩实验,对正弦形波纹夹芯圆柱壳的轴向准静态压缩进行了有限元模拟,模拟结果与实验结果吻合较好。在此基础上,探讨了夹芯圆柱壳芯层厚度A和正弦波周期数N对冲击载荷作用下夹芯圆柱壳的压溃模式和能量吸收特性的影响。结果表明,合理配置AN能够有效地提高比吸能,实现较理想的吸能变形模式。在准静态压缩下,结构参数为A3N12的夹芯圆柱壳具有最好的比吸能,为轴对称变形。在冲击载荷作用下,发生非轴对称变形模式的A7N12具有最好的比吸能和最高的平均压缩力效率。

     

  • 由于爆炸焊接过程具有瞬时性、复杂性,人们在通过实验及相关设备来观察、研究爆炸焊接过程时,效果十分有限。随着计算机技术的发展,数值模拟技术的突破为爆炸焊接研究提供了帮助。迄今为止,国内外诸多学者利用数值模拟软件对爆炸焊接过程及参数开展了大量研究,取得了较理想的研究成果。Nassiri等[1]分别利用光滑粒子流体动力学(Smoothed particle hydrodynamics,SPH)法、任意拉格朗日-欧拉(Arbitrary Lagrange-Euler,ALE)法模拟了爆炸焊接的高速撞击过程,并研究了结合界面的剪切应力和速度分布,结果显示只有SPH法再现了碰撞时的射流现象。Abe[2]使用二维有限差分法研究了爆炸焊接波的形成机理,计算结果与模拟结果保持一致。Yuan等[3]采用SPH法研究了6061Al/AZ31B的爆炸焊接,模拟得到波形界面和射流现象,但是并没有详细指出波的形成机理。Tabbataee等[4]使用有限单元法模拟了射流。Mousavi等[5-6]采用欧拉法模拟了射流和类似流体状的波状界面,并成功预测了波形尺寸和射流速度。王宇新等[7]应用无网格物质点法(Material point method,MPM),对爆炸荷载作用下基板和复板的动态变形过程进行了三维数值模拟,并分析了碰撞点压力和速度的变化情况。刘江等[8]用SPH法进行二维建模,重现了实验中观察到的射流和界面波现象,并揭示了碰撞压力、有效塑性应变、温度等参数随时间的变化关系。周春华等[9-10]研究了均匀布药下结合界面波的变化规律后,提出了新的不等药厚布药工艺。

    从众多学者的研究成果来看,数值模拟软件能够帮助人们全面、系统地了解爆炸焊接过程,降低实验成本,优化实验参数。在平板爆炸焊接中,通过炸药爆炸产生的爆轰能量推动复板与基板发生斜碰撞,碰撞界面在微秒级的时间内产生数千兆帕高压,发生塑性变形,从而实现基板和复板的固相焊接。由此可以看出,炸药是整个爆炸焊接过程的能量来源,因此对炸药药量和布药方式进行控制具有重要的研究意义。本研究应用LS-DYNA软件,采用SPH法进行二维建模,研究炸药与爆炸焊接界面波的关系及波的形成机理。

    SPH法是一种无网格法,适合处理爆炸、冲击等大变形问题,但是其搜索算法较为耗时,粒子越多,该问题越突出,计算效率越低[11]。为了提高计算结果的精确性,同时兼顾计算效率,炸药采用粗网格划分,基板和复板采用细网格划分。先采用LS-DYNA软件建立二维平面计算模型,再利用LS-prepost软件将网格全部生成SPH粒子(见图1)。复板和基板材料选取Cu和Q235钢,爆炸焊接选用硝铵炸药。模型尺寸:复板150 mm × 4 mm,基板150 mm × 15 mm,间隙6 mm,基板和复板网格尺寸为0.2 mm × 0.2 mm,炸药网格尺寸为0.4 mm × 0.4 mm。采用cm-g-μs单位制。

    图  1  计算模型
    Figure  1.  Computational model

    硝铵炸药选用Jones-Wilkins-Lee(JWL)[12]状态方程(EOS),计算公式为

    p=AJ(1ωR1V)eR1V+BJ(1ωR2V)eR2V+ωE0V
    (1)

    式中:AJBJR1R2ω为材料系数;p为爆轰产物压力,GPa;E0为初始比内能,kJ·cm–3V为爆轰气体产物的相对比容。炸药的具体JWL状态参数见表1,其中ρ为密度,D为爆速。

    表  1  硝铵炸药的JWL状态方程参数
    Table  1.  JWL EOS parameters of ammonium nitrate explosive
    ρ/(kg·m−3)D/(m·s−1)AJ/GPaBJ/GPaR1R2ω
    8002 800132.750.4235.31.20.21
    下载: 导出CSV 
    | 显示表格

    基板、复板均采用 Mie-Grüneisen状态方程[13]和Johnson-Cook材料模型[14]。Grüneisen状态方程被广泛应用于解决材料的大变形问题,它描述了粒子速度up和冲击速度D之间的基本关系,计算公式如下

    ρ=ρH+Γρ(eeH)
    (2)

    其中

    Γρ=Γ0ρ0=Constant
    (3)
    ρH=ρ0c0μ(1+μ)[1(s1)μ]2
    (4)
    eH=12ρHρ0μ1+μ
    (5)
    μ=ρρ01
    (6)

    式中:Γ0为Grüneisen系数,ρ为当前密度,ρ0为初始密度,c0为体积声速,s为压缩比。

    Johnson-Cook材料模型经常用来反映金属的力学行为,计算公式如下

    σ=(A+Bεnp)(1+Cln˙εp)(1Tm)
    (7)

    其中无量纲温度T*表示为

    T=(TTr)/(TmTr)
    (8)

    式中:εp为有效塑性应变;˙εp=˙εp/˙ε0p为有效塑性应变率,˙ε0p为参考应变率;ABCmn是与材料相关的常数;Tr为室温;Tm为熔点。Cu和Q235钢的Johnson-Cook材料模型参数列于表2,Grüneisen EOS参数列于表3,其中:c为声速,km/s; S1为拟合系数;a为Grüneisen系数Γ0的一阶体积修正,G为剪切模量。

    表  2  Cu和Q235钢的Johnson-Cook模型参数
    Table  2.  Parameters of Johnson-Cook model of Cu and Q235 steel
    Materialρ/(g·cm−3)G/GPaA/GPaB/GPanCmTm/KTr/K
    Cu8.96460.0900.2920.310.0251.091 356294
    Q2357.83770.7920.5100.260.0141.031 793294
    下载: 导出CSV 
    | 显示表格
    表  3  Cu和Q235钢的Grüneisen方程参数
    Table  3.  Grüneisen EOS parameters of Cu and Q235 steel
    Materialc/(km·s−1)S1Γ0a
    Cu3.9401.4892.020.47
    Q2354.5691.4902.170.46
    下载: 导出CSV 
    | 显示表格

    爆炸焊接质量的好坏极其依赖选取的爆炸焊接参数,如药量比、间距、碰撞速度、碰撞角等。参考文献[15]中的爆炸复合窗口,选取复板厚度δ1 = 4 mm时药量比(单位面积炸药与复板质量之比R)分别为R1 = 1.0、R2 = 1.5的两组参数开展研究。经计算得到对应的炸药厚度分别为44.8 mm和67.2 mm。由图2可知,R1靠近可焊窗口下限,R2位于可焊窗口内部,两组参数均位于爆炸复合窗口内部。

    图  2  爆炸焊接窗口
    Figure  2.  Explosive welding window

    为了研究炸药量与焊接界面波形的关系,首先进行均匀布药模拟。分别建立炸药厚度为44.8 mm和67.2 mm的计算模型,输出模拟图像,如图3所示。

    图  3  均匀布药模拟效果图
    Figure  3.  Simulation effect diagram of uniform charge

    为了更方便地了解爆炸焊接过程参数的变化规律,在结合面上等间距区域选取7个关键点,选取位置如图4所示。输出关键点的碰撞压力值,如表4所示。硝铵炸药的爆轰压力计算公式为

    图  4  关键点取样示意图
    Figure  4.  Schematic diagram of key point sampling
    表  4  均匀布药方案关键点碰撞压力
    Table  4.  Collision pressure of key points in uniform charge scheme
    Key pointPressure/GPaKey pointPressure/GPa
    R1 = 1.0R2 = 1.5R1 = 1.0R2 = 1.5
    A10.5811.602A54.9997.086
    A21.6722.002A65.7548.576
    A34.5075.289A70.5261.031
    A44.6546.191
    下载: 导出CSV 
    | 显示表格
    p=ρ0D21+γ
    (9)

    式中:γ为硝铵炸药的多方指数,ρ0为炸药密度,D为炸药爆速。

    由式(9)可以看出,模拟中使用的硝铵炸药的密度为常数,所以爆轰压力p只与炸药爆速D有关。由于炸药的爆速与单位面积的药量成正比[16],且R1 < R2,因此R2对应的爆轰压力要高于R1的爆轰压力。炸药的爆轰压力作用于复板,复板又传递到焊接界面,最终导致R2对应的基板、复板碰撞压力高于R1。根据图5的模拟结果可知,理论分析结果与模拟结果一致。

    图  5  关键点碰撞压力值折线
    Figure  5.  Line diagram of collision pressure of key points

    焊接界面波长的计算公式[17]

    λ=πvpd2c(cvc1)2
    (10)

    式中:vp为碰撞速度;d为复板厚度;c为材料声速;vc为碰撞点移动速度,等于炸药的爆轰速度。

    从式(10)可以看出,给定金属板材的材料参数后,复板厚度d和材料的声速c为常数,碰撞速度vp和碰撞点移动速度vc为变量,界面波的波长λvp成正比,与vc成反比。

    图3可以看出,复板上部均出现了打伤现象,这是由于前期炸药和板材划分的网格尺寸不同所致。R1R2两组模拟均得到了波状焊接界面,这被认为是焊接良好的标志[18],模拟结果与文献[19]的金相实验结果吻合较好。从图3(a)图3(b)看出,焊接界面在起爆端区域没有出现波状界面,随着距起爆端距离的不断增大,界面先后出现了无波到微波、微波到大波的转变。图3(a)中射流现象最先出现在4.299 6 μs时刻,而图3(b)中的射流最先出现在4.198 2 μs,早于前者,这是由于药量比越大,爆轰能量越大,导致射流出现较早。焊接界面的放大图像显示,波状界面先于射流出现,可以认为波的形成不一定需要射流,印证了Godunov提出的应力波机理[20]。从图3(c)图3(d)可以清晰地看出,碰撞点前方在基板和复板碰撞作用下,板材表面喷射出大量射流,可以清洗掉金属表面的杂质和氧化层,提高焊接质量[21]。喷射出的射流中,基板的成分明显高于复板,基板材料是射流成分的主要来源,这是由于Cu的密度高于Q235钢,密度较小的材料更容易产生射流[22]图3(e)图3(f)为模拟图像,表明基板与复板已经完全复合。从复合板中央部分的取样结果来看,图3(f)的波状尺寸大于图3(e),由于小波增加了焊接面积,有助于提高焊接质量,波形越大,越容易出现裂缝和孔洞等缺陷,因此可以认为药量比R1优于R2的焊接质量,药量比尽量取在可焊窗口的下限。

    图5是均匀布药下各个关键点的碰撞压力折线。考虑到边界效应的影响,去掉首尾两个关键点后,折线显示沿着爆轰方向焊接界面的碰撞压力逐渐增大,由于碰撞压力过大会产生熔化层,产生的稀疏波可能将已结合的复合板拉开,降低焊接质量,因此均匀布药不是最终选择。

    根据均匀布药方式下界面波的分布特点,起爆端区域的结合呈平直界面,这是由于炸药起爆时能量不稳定[23],碰撞压力小。在爆炸焊接中,碰撞压力过小会导致界面未复合[16],即起爆端附近极易出现未复合现象,降低金属板材的利用率,这种现象被称为边界效应,在实验和工程实践中应尽量避免。碰撞压力要超过某个临界值,复合板才能获得良好的焊接质量,这也证明了爆炸焊接是一种压力焊[24]。沿着爆轰方向,结合界面逐渐由无波发展成微波、大波界面,这是爆炸产物的堆集以及基板和复板碰撞引起的振动能在待复合区叠加并共同作用的结果[25-26]。结合式(9)、式(10)可知,波状界面的尺寸与碰撞点的移动速度有关,碰撞压力与炸药爆速成正比,在平行法爆炸焊接装置中爆速等于碰撞点的移动速度[27],由此得出,炸药的爆轰能量赋予了复板巨大的压力,碰撞压力决定界面波形。因此可以通过调整炸药厚度来控制爆轰能量,使界面波形维持在微波状,进而提高复合板的焊接质量。

    设计如图6所示的呈梯形装药结构,通过调整炸药起爆端和末端厚度ab的值,来确定一个合适的倾斜装药角度,沿着爆轰方向控制碰撞点的压力基本保持不变,避免因大波状界面而产生涡旋和裂缝,提高复合板的结合强度,使整个焊接界面都保持在微波状结合状态。布药方案见表5

    表  5  梯形布药方案
    Table  5.  Ladder charging scheme
    Schemea/mmb/mm
    67.258.8
    67.250.4
    67.242.0
    67.233.6
    下载: 导出CSV 
    | 显示表格
    图  6  梯形装药结构示意图
    Figure  6.  Schematic diagram of ladder charge structure

    由于网格划分较大,导致波形尺寸不易测量。当网格划分较小时,可以较清晰地观察界面的形貌特征。由前述分析得知,碰撞压力决定界面波形,因此将界面上的碰撞压力作为研究对象,使界面上各点处碰撞压力基本保持一致。

    不同梯形布药方案下界面关键点的碰撞压力如图7所示,具体压力值列于表6。由图7中折线的波动情况可知,当采用梯形布药方式后,基板、复板之间的碰撞压力不再呈均匀布药下逐渐增长的趋势,而是呈较小幅度的上下波动,因此梯形布药方式可以消除不利因素,使焊接界面的碰撞压力基本保持不变,以获得波长较小、波幅较小的微波界面。观察图7发现,起爆端和末端的碰撞压力最小,这是由稀疏波引发的边界效应所致。在不考虑首尾两端的压力时,方案Ⅲ的碰撞压力波动最小,因此最终焊接界面的波形状态好于其他方案。而方案Ⅱ中界面上的碰撞压力起伏最大,最终可能导致基板与复板未复合。因此确定合适的首尾装药高度是梯形布药方案的关键。

    表  6  梯形布药方案关键点碰撞压力
    Table  6.  Collision pressure of key points of ladder charge scheme
    Key pointPressure/GPa
    Scheme ⅠScheme ⅡScheme ⅢScheme Ⅳ
    A11.7381.1581.6940.351
    A22.5492.5482.1411.936
    A33.8393.8303.6212.776
    A45.2307.5475.4395.665
    A57.8908.3303.4134.537
    A66.4233.5053.7312.064
    A70.7800.4310.3970.435
    下载: 导出CSV 
    | 显示表格
    图  7  关键点碰撞压力值折线图
    Figure  7.  Line diagram of collision pressure of key points

    综上所述,采用梯形布药方式可以消除焊接界面波形不均匀现象,而且减少了炸药用量,同时也可以减小爆炸焊接实验现场引发的噪声。通过分析各个关键点的碰撞压力可知,方案Ⅲ的复合效果最好,即炸药起爆端和末端的厚度分别为67.2 mm和42.0 mm时装药倾斜角度最佳。在实际的工程实践中,梯形布药方式的应用并不广泛,原因是其影响因素较多,参数确定比较复杂。尽管减小炸药厚度会使碰撞压力减小,但碰撞压力的变化与炸药厚度并非成严格的正比关系,所以才会得到图7的模拟结果。如何优化梯形布药参数使界面波波形基本保持不变,还需要大量深入的研究。

    爆炸焊接过程具有瞬时性,因此很难用实验方法来研究界面波的形成与焊接参数之间的关系。虽然有关界面波形成机理的研究已经进行了数十年,但迄今为止仍然没有达成一个统一的认识[28]。期间众多学者提出了一些波形形成机制,主要有复板流侵彻机理[29]、Helm-holtz不稳定流机理[30-31]、涡脱落机理[32-33]和应力波机理[34]。随着数值模拟软件的发展,SPH法能够清晰地模拟出波形成过程,为解释界面波的形成机理提供了帮助。

    图8展示了采用SPH法得到的爆炸焊接界面波形成过程。基板与复板在P点高速碰撞,此时P点可看作低黏塑性流体状态,巨大的碰撞压力使P点产生塑性变形。如图8(a)所示,复板与基板碰撞后形成初始射流和再入射流,再入射流在前方复板的阻碍下向斜上方喷出。沿着焊接方向向前发展,碰撞点P转移到波峰上,见图8(b),先前的再入射流被基板捕获,形成在波峰的前后方,此处极易形成漩涡、空洞等缺陷,从而降低复合板的焊接质量。碰撞点P转移到波峰上后,再入射流与波峰碰撞,沿斜下方喷出。图8(c)中碰撞点P越过波峰后形成新的碰撞点,在巨大的爆轰压力下基板再次发生塑性变形,形成新的波形,由此产生周期性的波状界面。由图8可见,SPH法模拟的波形成过程与复板流侵彻机理的一致性较好,证明了SPH法在解释爆炸焊接界面波形成过程中复板流侵彻机理的有效性。

    图  8  波形成示意图
    Figure  8.  Illustration of wave formation

    (1)采用LS-DYNA软件和SPH法,模拟了整个爆炸焊接过程,得到典型的波状界面和射流现象,理论分析与模拟结果具有一致性。

    (2)在两种药量比、均匀布药方案中,忽略边界效应后的结果显示,沿着爆轰方向基板与复板之间的碰撞压力均逐渐增大,而且药量比越大,碰撞压力越大,界面波形越大。

    (3)在梯形布药方案中,通过改变炸药起爆端和末端的高度设计了4种方案,结果显示梯形布药可以有效消除爆炸焊接界面波的不均匀现象,使界面波形尺寸基本保持一致,而且节省了炸药用量。当起爆端和末端的高度分别为67.2 mm和42.0 mm时效果最佳。

    (4)介绍了几种波形成机理,展示并研究了界面波形成过程,模拟的波形成过程与复板流侵彻机理的一致性较好,证明了复板流侵彻机理解释界面波形成过程的有效性。

  • 图  正弦波纹圆柱结构示意图

    Figure  1.  Schematic diagram of a sinusoidal corrugated cylinder

    图  不同AN的夹芯圆柱壳

    Figure  2.  Sandwich cylindrical shells with different A and N

    图  Al 6061-O的工程应力-应变曲线

    Figure  3.  Engineering stress-strain curves of Al 6061-O

    图  正弦波纹圆柱壳结构的有限元模型

    Figure  4.  Finite element model of sinusoidal corrugated cylindrical shells

    图  压缩载荷-位移曲线的模拟与实验结果对比

    Figure  5.  Comparison of compressive force-displacement curves between simulation and experiment

    图  网格敏感性分析

    Figure  6.  Mesh sensitivity analysis

    图  动能与应变能的对比

    Figure  7.  Comparison of kinetic energy and internal energy

    图  典型的轴对称、非轴对称和混合变形模式

    Figure  8.  Representative deformation of axisymmetric, non-axisymmetric and mixed modes

    图  不同的AN下壳体的变形模式

    Figure  9.  Collapse modes of shells with various A and N

    图  10  不同的AN下试件的质量

    Figure  10.  Mass of specimens with different A and N

    图  11  不同的AN下夹芯圆柱壳能量吸收的模拟结果

    Figure  11.  Numerical results of the energy absorption of sandwich cylinder shells with different A and N

    图  12  N=4时内外壳和夹芯的比吸能

    Figure  12.  Specific energy absorption of inner and outer shells and sandwich with N=4

    图  13  不同的AN下夹芯圆柱壳的比吸能和变形模式

    Figure  13.  Specific energy absorption and deformation modes of sandwich cylindrical shells with different A and N

    图  14  不同冲击速度下夹芯圆柱壳的变形模式

    Figure  14.  Deformation patterns of sandwich cylindrical shells impacted at different impact velocities

    表  1  不同冲击速度下结构的能量吸收对比

    Table  1.   Comparison of energy absorption of structures at different impact velocities

    v/(m·s−1)StructureSEA/(J·g−1)PCF/kNCFE
    10A7N1036.9264.590.57
    A7N1238.0367.930.56
    A3N1028.2560.690.46
    A3N1230.9562.570.49
    20A7N1038.3163.410.61
    A7N1239.7467.020.56
    A3N1028.2761.190.46
    A3N1234.8261.910.56
    30A7N1041.2469.340.59
    A7N1241.3170.040.58
    A3N1032.1567.160.48
    A3N1237.4675.010.50
    下载: 导出CSV
  • [1] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. doi: 10.1016/S0020-7403(01)00031-5
    [2] 朱文波, 杨黎明, 余同希. 薄壁圆管轴向冲击下的动态特性研究 [J]. 宁波大学学报(理工版), 2014, 27(2): 92–96.

    ZHU W B, YANG L M, YU T X. Study on dynamic properties of thin-walled circular tubes under axial compression [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2014, 27(2): 92–96.
    [3] JANDAGHI SHAHI V, MARZBANRAD J. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes [J]. Thin-Walled Structures, 2012, 60: 24–37. doi: 10.1016/j.tws.2012.05.015
    [4] SADIGHI A, EYVAZIAN A, ASGARI M, et al. A novel axially half corrugated thin-walled tube for energy absorption under axial loading [J]. Thin-Walled Structures, 2019, 145: 106418. doi: 10.1016/j.tws.2019.106418
    [5] YAO S G, ZHU H F, LIU M Y, et al. Energy absorption of origami tubes with polygonal cross-sections [J]. Thin-Walled Structures, 2020, 157: 107013. doi: 10.1016/j.tws.2020.107013
    [6] ZHU G H, LIAO J P, SUN G Y, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading [J]. International Journal of Impact Engineering, 2020, 141: 103509. doi: 10.1016/j.ijimpeng.2020.103509
    [7] HOU Y B, ZHANG Y, YAN X L, et al. Crushing behaviors of the thin-walled sandwich column under axial load [J]. Thin-Walled Structures, 2021, 159: 107229. doi: 10.1016/j.tws.2020.107229
    [8] WU S Y, SUN G Y, WU X, et al. Crashworthiness analysis and optimization of fourier varying section tubes [J]. International Journal of Non-Linear Mechanics, 2017, 92: 41–58. doi: 10.1016/j.ijnonlinmec.2017.03.001
    [9] FU J, LIU Q, LIUFU K M, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
    [10] 侯淑娟. 薄壁构件的抗撞性优化设计 [D]. 长沙: 湖南大学, 2007: 44−57.

    HOU S J. Optimization design of the thin-walled components with crashworthiness criterion [D]. Changsha: Hunan University, 2007: 44−57.
    [11] 闫栋, 王根伟, 宋辉, 等. 类向日葵夹芯圆柱壳径向冲击数值模拟 [J]. 高压物理学报, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858

    YAN D, WANG G W, SONG H, et al. Numerical simulation of radial impact on sunflower-like sandwich cylindrical shell [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
    [12] 白江畔, 张新春, 沈振峰, 等. 冲击载荷下多胞元薄壁结构的动态压溃行为研究 [J]. 振动与冲击, 2020, 39(18): 145–152. doi: 10.13465/j.cnki.jvs.2020.18.019

    BAI J P, ZHANG X C, SHEN Z F, et al. Dynamic crushing behaviors of multi-cell thin-walled structures under out-of-plane impact [J]. Journal of Vibration and Shock, 2020, 39(18): 145–152. doi: 10.13465/j.cnki.jvs.2020.18.019
    [13] MOHAMED A S, LABAN O, TARLOCHAN F, et al. Experimental analysis of additively manufactured thin-walled heat-treated circular tubes with slits using AlSi10Mg alloy by quasi-static axial crushing test [J]. Thin-Walled Structures, 2019, 138: 404–414. doi: 10.1016/j.tws.2019.02.022
    [14] 杨帆, 王鹏, 范华林, 等. 薄壁管状吸能结构的吸能性能及变形模式的理论研究进展 [J]. 力学季刊, 2018, 39(4): 663–680. doi: 10.15959/j.cnki.0254-0053.2018.04.001

    YANG F, WANG P, FAN H L, et al. Review of theoretical models on the energy absorption and deformation modes of the thin-walled tubular structures [J]. Chinese Quarterly of Mechanics, 2018, 39(4): 663–680. doi: 10.15959/j.cnki.0254-0053.2018.04.001
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  183
  • PDF下载量:  37
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-03-26
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2022-07-28

目录

/

返回文章
返回